
Mi Casa su Botnet? 1

Learning the Internet of Things with
WaterElf, unPhone and the ESP32

Hamish Cunningham 2

Professor of Computer Science,
University of Sheffield
hamish.gate.ac.uk, unphone.net

(with Gareth Coleman and Valentin Radu)

Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1 Copyright © Hamish Cunningham. Licence: CC-BY-SA-NC 4.0.
2 I am indebted to Gareth Coleman for many vital contributions, the staff of the Diamond

Electronics Lab for creating a brilliant learning environment, Valentin Radu for the ma-
chine learning sections, and all the Graduate Teaching Assistants for helping out over the
years. And to the students, for Making Stuff Work :) Thanks all!

https://hamish.gate.ac.uk/
https://unphone.net/

Contents

1 Hope, Technology and Heath Robinson 11
1.1 Welcome to the Toy Shop! . 12

1.1.1 What’s the Catch? . 12
1.1.2 Catch #3: ‘Click Here to Kill Everybody?’ 13
1.1.3 IoT: From the General to the Specific 13
1.1.4 The ESP32 Microcontroller 15
1.1.5 Hope . 16

1.2 How the Course Works . 16
1.2.1 Main Changes since Iteration 6 (2023) 17
1.2.2 Main Changes since Iteration 5 (2022) 18
1.2.3 Main Changes since Iteration 4 (2021) 18
1.2.4 Main Changes since Iteration 3 (2018) 19
1.2.5 Assessment . 20

1.3 COM3505 Week 00: Preliminaries 20
1.3.1 Setting up your Git Repository 21
1.3.2 Tell us your Account User Name on GitLab 25
1.3.3 Good Tools to Learn . 25
1.3.4 STAYING SAFE in the Electronics Lab 26
1.3.5 Using the iForge . 27

1.4 COM3505 Week 01 Course Notes 27
1.4.1 Learning Objectives . 27
1.4.2 Assignments . 27
1.4.3 Working with your Git Repository 27
1.4.4 First Lab Checklist . 29

1.5 Further Reading . 30

2 Definitions, and a Burning Question 31
2.1 Defining the IoT . 31
2.2 Revolutionary Code: from MIT Printers to the Arduino 32

2.2.1 Return with me to Boston in the 1970s… 33
2.2.2 Whaddya Mean, I can’t Fix It?! 34
2.2.3 What To Do? . 34

2.3 Coding Support Tools: IDEs, SDKs, Libraries 35
2.3.1 Toolchains: In the Beginning, There Was The C Compiler… . . . 36
2.3.2 ESP-IDF, FreeRTOS and the ESP32 Arduino Core 36

2.3.2.1 ESP-IDF . 37

3

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

2.3.2.2 FreeRTOS . 39
2.3.2.3 The Arduino Core for ESP32 39
2.3.2.4 Version Hell!!! . 40

2.3.3 Developer Tools: CLIs and IDEs 41
2.4 Cross-Platform Development with Containers 43

2.4.1 VMs, the Cloud, and Containers 43
2.4.2 DevOps, Containers and CI/CD 44
2.4.3 Portable Development Environments 45

2.5 A Helper Script: magic.sh . 45
2.6 COM3505 Week 02 Notes . 47

2.6.1 Learning Objectives . 47
2.6.2 Assignments, Set Up, Exercises 1 & 2 (Ex01, Ex02) 47
2.6.3 Adding a .gitignore File . 48
2.6.4 Set up your Programming Environment 48

2.6.4.1 Using the Arduino IDE (ArdIDE) 49
2.6.4.2 Using VSCode and the PlatformIO Plugin 52
2.6.4.3 Using magic.sh and the Firmware Template 53
2.6.4.4 Docker + PlatformIO + WebSerial to build cross-platform 54
2.6.4.5 Using Docker with magic.sh, pio or idf.py 59
2.6.4.6 Using PlatformIO CLI 60

2.6.5 Hardware 2: Sensor/Actuator Board 61
2.6.5.1 Using a Breadboard to Make a Sensor/Actuator Circuit . 61

2.7 Further Reading . 66

3 History; Blinking Things; WiFi 69
3.1 The Multiple Personalities of the Arduino Project 69
3.2 A Crossover Point . 72

3.2.1 The Early History of the IoT 73
3.2.2 The Current State of IoT Hardware 74

3.3 COM3505 Week 03 Notes . 75
3.3.1 Learning Objectives . 75
3.3.2 Assignments . 75
3.3.3 Notes on the Model Code from Week 2 76

3.3.3.1 Recap: Connecting to the ESP32 77
3.3.3.2 Various Arduino Functions 77
3.3.3.3 Reading from Switches 78

3.3.4 Exercise 03 Notes . 78
3.3.5 Extension to Blinky (exercise 02) 78
3.3.6 A Final Breadboard Prototype: 9 LEDs 80

3.3.6.1 Pinouts . 81
3.4 Further Reading . 84

4 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

4 Country of the Blind: Networking Devices Without UIs 85
4.1 Provisioning and Update . 85

4.1.1 WiFi-based Provisioning . 86
4.1.2 Over-the-Air Updates (OTA) 88
4.1.3 WiFi Provisioning + OTA = ??? 89
4.1.4 RainMaker Provisioning & OTA 90
4.1.5 Provisioning and OTA with Matter 94

4.2 COM3505 Week 04 Notes . 95
4.2.1 Learning Objectives . 95
4.2.2 Assignments . 95

4.2.2.1 Coding Hints . 96
4.2.2.2 Which WiFi Network? What if it Doesn’t Connect? . . . 97
4.2.2.3 Details of Our Cloud Server (for Ex08) 98

4.2.3 Moving 9 LEDs to Matrixboard 98
4.3 Further Reading . 103

5 Sensing and Responding 107
5.1 Analog and Digital Sensors . 107

5.1.1 Two Ways to Sense Light Levels 108
5.2 Reading from Analog Sensors . 109
5.3 Digital Sensors . 111

5.3.1 Avoid Floating Voters . 112
5.3.2 Vcc by any Other Name Would Smell as Sweet 113

5.4 Local Protocols: UART, SPI, I2C, 1-Wire… 114
5.4.1 Terminology . 115
5.4.2 UART . 115
5.4.3 SPI . 116
5.4.4 I2C . 117
5.4.5 1-WIRE . 118
5.4.6 Other Local Protocols . 118
5.4.7 Talking the Talk: Local Protocol Examples 119

5.5 Actuators . 121
5.5.1 High Power Actuators with Relays 122
5.5.2 High Voltage Actuators with Radio Control 122
5.5.3 Electric Blankets, Fish Farming and Liverpuddlians 123

5.6 COM3505 Week 05 Notes . 124
5.6.1 Learning Objectives . 124
5.6.2 Assignments . 125

5.6.2.1 Provisioning and Firmware Update 125
5.6.2.2 Configuring Ex10 . 126
5.6.2.3 Hints . 127

5.6.3 The ESP’s Sense of Touch . 127

Hamish Cunningham 5

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

6 Machine Learning and Analytics in the Cloud 131
6.1 Is AI about Intelligence? . 131
6.2 IoT, Big Data Analytics, and Deep Learning 134

6.2.1 Machine Learning at the Edge 134
6.2.1.1 Motivation . 134
6.2.1.2 Introduction to Machine Learning 135
6.2.1.3 Training Deep Neural Networks 136
6.2.1.4 Neural Network Quantization 138
6.2.1.5 The Quantization Method 139
6.2.1.6 Keyword spotting exercise 140

6.3 COM3505 Week 06 Notes . 141
6.3.1 Learning Objectives . 141
6.3.2 Assignments . 142

6.3.2.1 Coding Hints . 142
6.3.2.2 Setting up an IFTTT Applet 142
6.3.2.3 Accessing the IFTTT Applet from Firmware 143

6.4 Further Reading . 144

7 Scheduling Tasks, Gestating New Devices 145
7.1 Timers, Interrupts, Tasks, Events 145

7.1.1 Time Slicing . 145
7.1.2 Interrupts and Timers . 147
7.1.3 FreeRTOS Tasks . 149

7.2 IoT Device Gestation: Creating the unPhone 151
7.2.1 Steps in Device Creation . 164
7.2.2 Some Lessons . 169

7.3 COM3505 Week 07 Notes . 170
7.4 Futher Reading . 170

8 Applications 173
8.1 Beep my Earing Whenever I Start Sounding Like a Donkey 173
8.2 Projects: Design, Build, Document 174

8.2.1 Possible Projects . 175
8.3 LiPo Safety . 176

8.3.1 What are Lithium Polymer Batteries? 176
8.3.2 What are the Dangers? . 176
8.3.3 Avoiding Problems . 176

8.4 Build and Development Notes . 177
8.4.1 DIY Alexa . 177

8.4.1.1 Why “Marvin?” . 178
8.4.1.2 Parts . 179
8.4.1.3 Putting it all Together 179
8.4.1.4 Marvin, Siri, Alexa, Google Home: a Privacy Nightmare?! 198

6 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.2 unPhone Projects . 199
8.4.3 A Simple Robot Car . 200

8.4.3.1 Robot Car: Kit List 204
8.4.4 Binary Diff for Incremental OTA 204

8.4.4.1 Advanced Topic: Drag&Drop Update 205
8.4.5 TV Remote, TV-B-Gone: IR-Remote Projects 206
8.4.6 Light Sensor . 212
8.4.7 Remote Control Power Sockets for Home Automation 214

8.4.7.1 Home Automation: Kit List 220
8.4.8 Sound Input . 220

8.4.8.1 CMG ICS-43434 . 220
8.4.8.2 Adafruit SPH0645LM4H 221

8.4.9 MP3 Player . 224
8.4.10NeoPixels; Dawn Simulator Alarm 224

8.4.10.1Dawn Simulator: Kit List 225
8.4.11Peer-to-Peer Voting Systems 225
8.4.12Panic Button . 226
8.4.13Ultrasonic sensors . 227
8.4.14Smart Watches . 229
8.4.15Predictive Text UI . 230
8.4.16Musical Instrument . 231
8.4.17Bedtime Tracker . 231
8.4.18Battleships Game . 231
8.4.19A Note on UIs . 232
8.4.20Air Quality Monitor . 232

8.4.20.1Air Quality: Kit List 239
8.5 COM3505 Week 08 Notes . 240

8.5.1 WARNINGS!!! . 240
8.5.2 Learning Objectives . 240
8.5.3 Assignments and Assessment 240

8.6 Further Reading . 240

9 Learning in the Fog – AI on the Edge 243
9.1 Why Learn at the Edge? . 243
9.2 Federated Learning . 244

9.2.1 How does FL work? . 244
9.2.2 Applications of FL . 246
9.2.3 Research challenges . 247
9.2.4 Summary . 248
9.2.5 Hands on experience . 248

9.3 COM3505 Week 09 Notes . 248
9.3.1 Learning Objectives . 248

Hamish Cunningham 7

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

10 WaterElves, Gripples and Fish Poo: IoT Case Studies 249
10.1Aquaponic Control Systems . 249

10.1.1Urban Agriculture . 249
10.1.2Research Questions . 252

10.2COM3505 Week 10 Notes . 255
10.2.1Learning Objectives . 255

10.3Further Reading . 256

11 unPhone Yourself! 257
11.1The Hardware . 258
11.2Programming the unPhone . 260

11.2.1Class unPhone, and minimal example 260
11.2.1.1Pindefs . 262
11.2.1.2Power management task helpers 263
11.2.1.3UI0 helpers . 263
11.2.1.4Touch, display, acceleration 263
11.2.1.5SD cards, LoRa . 264
11.2.1.6PMU API . 265
11.2.1.7Small data store and other utils 265
11.2.1.8The TCA9555 . 266
11.2.1.9Debug and timing macros 267

11.2.2The UI0 and LVGL interfaces 267
11.2.2.1LVGL . 267
11.2.2.2UI0; adding a screen 269

11.3Power Consumption States . 270
11.4A Tour of the Hardware Schematics 275

11.4.1The ESP32 and Core Modules 275
11.4.2The LCD and Touch Screen 277
11.4.3Power Management . 278

11.5A Note on Versions . 278
11.6COM3505 Week 11 Notes . 279

11.6.1Learning Objectives . 279

12 Gateway to the Future 281
12.1Non-Local Communications Protocols 281

12.1.1Lower Power WANs and TTN 284
12.2Hope, Revisited . 287

12.2.1The Depressing Bit . 287
12.2.2The Third Certainty: Change 289

12.2.2.1Democratising… Stuff? 290
12.2.2.2IoT: from their Cloud to our Fog? 291
12.2.2.3Transition: from Sustainability to Resilience? 294

12.2.3The Main Reason . 295

8 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

12.3COM3505 Week 12 Notes . 296
12.3.1Learning Objectives . 296

13 Appendix A: More Notes on Build Systems 297
13.1CLI on a Raspberry Pi . 297
13.2CLI Using Docker . 299
13.3VSCode IDF Extension . 300
13.4Using VSCode with the Arduino Extension 301
13.5FAQ . 302

14 Appendix B: CircuitPython on Feather S3 and unPhone 305
14.1What is CircuitPython? . 305
14.2CircuitPython on the Feather S3 . 306
14.3Porting CircuitPython to the unPhone 306

15 Colophon 309

Bibliography 311

Hamish Cunningham 9

1 Hope, Technology and Heath Robinson

1

This book covers Sheffield University’s The Internet of Things course iteration 7, run-
ning in Spring 2024. It is intended for students of that course, but is also intended to
be useful to anyone studying the IoT and its expression in electronic devices based
on microcontrollers in general and the ESP32 family in particular.

Each chapter begins with general discussion, history or theory, then finishes with
instructions for a week’s worth of practical work. Although later material depends
to varying degrees on preceding chapters, we have tried to make the order of the
practical work as flexible as possible so that you can learn in whatever sequence is
convenient for you.2

(The practical work in this chapter and next, though, covers enrolling on the course
and setting up your development environment, so please prioritise its early com-
pletion!)
1Wilgengebroed, via Wikimedia.
2We know this is a difficult point in your degree so we try to make this a low stress course :)

11

images/iot-wilgengebroed.jpg
https://sheffield.ac.uk/
https://commons.wikimedia.org/wiki/File:Internet_of_Things.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

So, what is the IoT and where does this course fit in? Read on…3

1.1 Welcome to the Toy Shop!

You made it! You’ve worked hard for years to get this far, and now you get to play
:)

As computer scientists and software engineers we spend much of our time with
machines whose secrets are hidden beneath multiple layers of abstraction: BIOS,
bootloader, operating system, programming language, library API, protocol defini-
tion, SDK4, etc. etc. These layers allow us to build systems of incredible power and
sophistication, but they also (intentionally) obscure the operation of the underlying
hardware engine. This course is a chance to rip the top off the box of tricks, hotwire
the starter motor and delve deep into the grungey secrets of the electronic wizardry
that makes our discpline possible.

The course is also a way to understand how the latest great wave of technological
transformation is streaming into our lives, enabled by the combination of tiny con-
nected microcontrollers, cyber-physical systems and ubiquitous networking. This
transformation is driven by the same logic as the explosive consequences of TCP/IP
and HTML, but if the last 20 years were about the web, then the next 20 will be
about making. Just as always-on connectivity and decentralised production in the
virtual world enabled revolutions in creating, sharing and consuming on-line, now
the same changes are starting in the world of manufacturing, and the consequences
are likely to be massive. (There’s perhaps an 80-20 ratio between economic activ-
ity devoted to atoms, or physical processes, in comparison to bits, or informational
processes.) In the IoT there’s still a space to get in on the ground floor, and learn
how to make with the foundational hardware of the next wave.

Hang on to your hat; the future is a whirlwind!

1.1.1 What’s the Catch?

Actually there are two :(

First, you’re going to be programming a tiny little device that has, in comparison
to that shiney laptop on your desk or that smartphone in your pocket, close to
zero computational resource. There’s no paging, for example, so in the sense of
time sharing (first developed in the 1960s) our devices don’t even run an operating
system! This can be a challenge. Be prepared.

Second, ideally you’re going to need to install an SDK of one sort or another on your
own machine, because you need to be able to spend concentrated hours playing
3Reading this on GitLab.com? There’s also a PDF version, or HTML at iot.unphone.net.
4SDK: Software Development Kit.

12 Hamish Cunningham

https://iot.unphone.net/micasa-su-botnet.pdf
https://iot.unphone.net/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

with the beasts, and there’s nowhere better than your own computer for experi-
menting.

To help you with these challenges we will:

• provide example code up front
• provide the large majority of the content as part of these notes
• support the code and notes in an on-line forum
• provide example scripts and documentation to help install and run the SDKs
on Ubuntu (22.04) or RaspiOS (Buster) or Docker

If you don’t have a machine that you can use for this and need something cheap,
you might try a Raspberry Pi 4 or better (preferably an 8GB models), which are very
capable of running the basic IoT SDK that we work with.

If you’ve already got a machine running MacOS or Windoze don’t panic:

• you can just follow the native SDK install instructions for your platform, which
we link to in Chapter 2

• alternatively you can run an Ubuntu VM on MacOS or Windoze quite easily
(e.g. using Qemu), or use the bash shell on MacOS, or try Windows Subsystem
for Linux (WSL), or Cygwin, or Docker

And: look on the bright side, the more you do, the more you learn :) (And: DevOps
is a thing.)

1.1.2 Catch #3: ‘Click Here to Kill Everybody?’

Actually I lied: there are three catches:

As the perpetual beta style of service-oriented computing moves into physical
spaces, we’re all at the mercy of suppliers’ willingness to use us as guinnea pigs
– only this time our homes and our clothes and our handbags are the venue of
choice.5 Will the future of the IoT be dominated by botnets and fraud? Or will we
use the new machines to help face up to the massive survival challenges that a
finite world poses to an expansionist system? I think you’re part of the answer.

1.1.3 IoT: From the General to the Specific

As humanity’s latest pandemic swirled across the world, wreaking havoc on the
poor, the old and the unlucky (and giving the powerful their latest excuse for mould-
ing us all into yet more profitable shapes), some small comfort could be found in

5In February 2021, for example, The Register reported that Amazon-owned “smart” doorbell maker
Ring “is suffering a major outage with many of its video doorbells effectively dead, turning smart
homes into very dumb ones.”

Hamish Cunningham 13

https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.theregister.com/2021/02/03/amazon_ring_outage/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

the contemplation of the intricate. The history of machines is part of what distin-
guishes our species: cooperating to create the preconditions of our existence using
ever more sophisticated engines.

Computational engines have brought a new level of generality to the picture: Turing
machines exemplified by von Neumann architectures and running on some millions
or billions of transistors have become a universal mechanism for information pro-
cessing and automatic control, and collectively we are deploying more and more
compute power, memory and storage at a truly astonishing rate. The extreme ex-
pression of this tendency is cloud computing, to the degree that it is now hard to
imagine a compute problem which would exceed the combined power of the mod-
ern cloud. (ChatGPT is a striking example of the revolutionary consequences of
coupling this power with the accumulated data of several decades of web and so-
cial media data collection. Not a general AI, but something that sometimes does a
very convincing imitation of one!)

At the opposite extreme from the general purpose computer are those engines that
are tailored (ever more precisely) to a specific purpose. These machines, in the
limit, form minimal solutions to complex problems. There are few fields that ex-
hibit this minimalism as purely as what is now called the Internet of Things6. As
computation has permeated almost all corners of technology a particular class of
problems has become prominent, where we seek not generality but to consume
the smallest viable quantity of resource. The use cases for a general purpose ma-
chine are always expanding and we can always, potentially at least, justify the
devotion of more resource to their construction. In contrast, the uses case for
the Internet of Things are inextricably tied to objects whose sizes, costs
and operational environments present a constant resource challenge, and
a constant downwards pressure on compute cycles and power consump-
tion.

Computing, then, has two souls: the general and the specific. This book argues that
the IoT is firmly part of the latter. Serendipitously, this soul uses as little planetary
resource (and our precious attention) as is possible. Reduce, reuse, recycle (and
repair, and reclaim, and recover, and… well, the time for action is now!).

The solutions that we build in the IoT are beautiful in their intricate simplicity, mini-
mal expressions of the vast power of our universal machines, and their “…perfection
is attained not when there is nothing more to add, but when there is nothing more
to remove”7.

Of course we don’t always achieve minimalist elegance on our first tries. Heath
Robinson captured the feeling I have when I look at some of my previous attempts
at IoT devices:
6There are many other terms we can correctly apply to this field, and we’ll look at these later on as
part of putting our work into its historical, social and economic contexts. (You don’t know where
you’re going if you don’t know where you’ve been!)

7Airman’s Odyssey, Antione de St. Exupery.

14 Hamish Cunningham

https://en.wikipedia.org/wiki/Waste_hierarchy
https://hamish.gate.ac.uk/posts/2017/01/01/the-future/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8

This course is about transforming our computational selves from high priests of
the general purpose to paragons of minimalism (probably via the joyfully messy
intermediary of Heath Robinson).

Enjoy the ride!

1.1.4 The ESP32 Microcontroller

We will come to the question of how to think about the various types of hardware
used in the IoT many times during the course. To begin with, suffice it to say that
IoT devices use network-connectedmicrocontrollers. (Theymay be interfaced to IoT

8From Socks Studio.

Hamish Cunningham 15

images/heath-robinson-pipe-lighter.jpg
http://socks-studio.com/2016/11/07/william-heath-robinsons-wacky-inventions/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

hubs and gateways, which generally use ARMmicroprocessors, but for our purposes
the key innovation and core hardware is the networked microcontroller.)

For this course, we will use a microcontroller called ESP32, which although a relative
newcomer has become very popular over the last half decade or so. It is relatively
cheap and it’s firmware ecosystem is very open by industry standards. Every stu-
dent on the course gets an ESP32 development board9, and programming it is a
core practical skill that we aim to teach here.

Feel free to read more about the chip now, or wait and see :)

1.1.5 Hope

What if we wish not simply for the comfort offered by contemplating (and, later,
controlling) the miraculous intricacies of task-specific computational engines, but
also for hope?

Take a minute. Switch off your phone. Look at the objects around you, remember
the food on your plate at your last meal, feel the warmth of your clothing, the
security of the building you are sitting in. The economic system that creates all
of these things, all of these preconditions for your existence, is driven by a single
imperative that equates profit with value. When that equation is combined with the
vast and impersonal forces of transnational corporate competition the results are
well known. We use our atmosphere as a sink for the carbon remains of an aeon
of decayed flora and fauna. We use each other as expendable “human resources.”
We crowd sick animals together in zoonotic melting pots and express surprise at
the apocalyptic consequences.

In this somewhat gloomy context there are nevertheless several glimmers of hope
connected to the IoT… but allow me, dear reader, a little suspense in my narrative:
we’ll come back to how to save the world after we’ve done some of the spade work.
Watch this space :)

1.2 How the Course Works

The course (like life) has two sides, practical and theoretical10. The practical work
is split in two halves:
9Comments like this are directed at to the original audience for this book: students of the COM3505
IoT course at the University of Sheffield. If you’re using the book to learn from outside the Univer-
sity, then you probably need to get at least an ESP32 development board to work with. (Ideally
this would be an Adafruit ESP32S3 Feather with PSRAM.) Some of the course discussion happens
within closed systems, but you’ll be welcome to participate at forum.unphone.net wherever you’re
coming from :)

10And, just like life, the practical work is frequently more fun :) To understand why the fumbling works
and how to fix it if it doesn’t requires the theory, however :(

16 Hamish Cunningham

https://hamish.gate.ac.uk/posts/2014/11/18/147-companies-run-the-world/
https://forum.unphone.net/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1. up to week 7 we program the basic functions of an IoT device, step by step
2. from week 8 we choose a project from a range of options and work on it inten-
sively until week 12

(The project, and hardware kit, is yours to keep at the end of the course.)

We provide information via three main channels:

• a gitlab repository, the-internet-of-things, containing the latest version of
these notes, example code and helper scripts11

• two discussion forums (a University Blackboard discussion board), and the un-
Phone community support forum

• weekly lectures, and hands-on sessions in the Diamond Electronics Lab (DIA
2.02)

(There is also a small amount of administrative information on the University Black-
board page for the course; make sure to check it out.)

There is a notes section for each week of the course12. Each chapter ends with a
“week N course notes” section describing our objectives for this part, and speci-
fiying practical work that we want you to complete. By and large you can read the
first parts of the chapters in lean-back mode: they are discursive, and intend to
give a flavour of the field and its historical and technical contexts. The latter parts
of the chapters are more directive, and you’ll need to sit at a keyboard and follow
instructions; the intent is to lead you to practical outcomes and running code.

There is example code in the exercises tree of the course materials repository. This
code covers many of the tasks that we ask you to complete week by week. You can,
of course, copy the answers without trying to come up with your own solution, but
you will learn little by doing so. The recommended method is to implement your
own answer to the exercises, then go to the relevant example code and compare it
with yours.13

This is a 10 credit (level 3) module; this means about 100 hours work. It is taught
over one semester, so it averages out at about 7-8 hours per week. (Depending on
your existing skills and previous experience you may need more or less time.)

1.2.1 Main Changes since Iteration 6 (2023)

This is iteration 7 running in 2024.

11See an error, omission or something that could be improved? Please raise an issue or make a pull
request.

12Guess which chapter this is. Did you say “one?” Pat yourself on the back, you’re getting the hang
of this IoT stuff already! (If you said “zero” you may have spent large parts of your life writing C
code.)

13Your answer better than ours? Well done! Send me a pull request if you have time.

Hamish Cunningham 17

https://gitlab.com/hamishcunningham/the-internet-of-things
https://www.sheffield.ac.uk/apse/digital/blackboard/discussionboards
https://forum.unphone.net/
https://forum.unphone.net/
https://www.sheffield.ac.uk/engineering/diamond/laboratories
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises
https://gitlab.com/hamishcunningham/the-internet-of-things/-/issues

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The hardware platform has stabilised this year, and the chronic parts shortage that
dogged us since the start of the pandemic has finally eased off sufficiently that we
can probably release an end user version of the unPhone (only around 3 years late,
but hey ho). The ESP32S3 is still the microprocessor of choice for a large segment
of the IoT ecosystem, so a great platform to be learning on in 2024 :)

We also now have a stable docker + platformio + web serial build method, that
works well on Windows and (hopefully) Mac as well as (of course) Linux. This should
make life a lot easier :) Again this is state of the art, with containers and CI/CD
definitely an industry standard in 2024.

You lucky things.

IDF and Arduino core versions: we’re still using 4.4.x and 2.0.x releases while wait-
ing for 5.1.x / 3.0.0 (the latter is in alpha at present and will likely need a fair bit of
migration work). Versions 2.0.6 (a little old but quite stable) and 2.0.14 (the latest
of the 2.x line, bringing with it IDF 4.4.6) of the core should both work.

1.2.2 Main Changes since Iteration 5 (2022)

This was iteration 6 running in 2023.

Changes:

• this year we’re moving from the ESP32 to the ESP32S3
• on the S3 (and unPhone 9) you can try CircuitPython if you wish, but the as-
sessed work is still in C++

• the unPhone board definitions (from version 7) are now part of the Arduino
ESP32 core, and of PlatformIO

• as usual ESP software has leapt ahead; ESP-IDF is now counting version 5 as
the latest stable release, but the Arduino core is not quite there yet; we’ve
standardised on version 4.4.3 of IDF and 2.0.6 of the core for the example
code and these notes (or 4.4.6 and 2.0.14)

• the climate crisis is finally over and we’re no longer rushing headlong to emu-
late the lemmings (only joking, unfortunately)

1.2.3 Main Changes since Iteration 4 (2021)

This was iteration 5 running in 2022.

The previous run, iteration 4, with almost no lab sessions, went better than expected
:) (The student feedback we collected is available from Blackboard.)

There were a couple of things that glitched a little:

• For most students this is the final stretch of their degree, so there are lots of
tough deadlines and it is challenging to have an open-ended assignment at

18 Hamish Cunningham

https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

this point. (We previously ran the course in the autumn semester, which was
a bit less pressured, but covid prompted us to bump it backwards in the hope
of offering lab sessions.)

• The freedom to experiment has been cited as one of the best features of the
course, but people also said that more guidance on the parameters would help.

In 2022 we’re making these changes in order to address those two issues:

• roll the clock back in time to October 2021 and run it then instead (umm,
actually we didn’t manage that one)

• fully publish assessment 2 before Easter (so you can almost finish the course
over the holiday if that fits your schedule best!)

• make it clearer that assessment 1 is a dry-run for assessment 2, so feedback
from assessment 1 can guide you in assessment 2

In addition, I’ve significantly simplified the support tooling (specifically the magic.sh
shell script), and added the ability to use the tooling via Docker to make cross-
platform working easier.

I hope you like it! (If you do, tell others, if you don’t, tell me ASAP and I’ll try to fix
it!)

1.2.4 Main Changes since Iteration 3 (2018)

We needed to change quite a lot from last time the course ran! The 2021 version
relies on 3 Ts: Toys@home, lots of Text, and Tech support :)

• we’ll give you parts kits set up to use at home
• more material is available on-line (we’re an open source course14)
• there is less dependence on lab-based working
• there is no team working
• we’ll answer questions ASAP in our online forum – this is the first port of call
for help during the course

• assessment is now done by threshold and grading (see next section): you
have to exceed a minimum threshold to pass; if successful you are separately
graded

• we assume that you will be working on your own computer, at least part of the
time

• soldering (in the Diamond electronics lab) is now optional
• wearing a silly hat during all programming sessions is now officially encour-
aged by our Head of Department, Professor Guy Brown, who will be pleased
to advise you on all matters of millinery sartorials15

14For this iteration pretty much everything is now open and freely accessible in its up-to-the minute
form (apart from the exam questions!).

15All statements in this document are true to the best of our knowledge, except those that aren’t.

Hamish Cunningham 19

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

1.2.5 Assessment

Threshold and grading works by separating the process of passing the course from
the process of attaining a good grade. The threshold assessments check that you
have a basic understanding of all the material; the grading assessment evaluates
the quality of that understanding in depth.

The course is assessed by two practicals (lab1, lab2) and a (multiple choice) exam.
Lab1 happens at week 7 and lab2 at week 12 (and the exam during the standard
exam period at the end of the semester). (A mock exam during term will allow you
to practice the material.)

You must pass lab1 and the exam in order to pass the course. This will give you a
score of 40%. In order to score more than 40% you must also complete lab2, the
project.

Lab1 and the exam are assessed as pass/fail only (and no score is given for lab1).
A pass in both contributes 40 marks to your final result.

Lab2 is a project which students spend several weeks completing at the end of the
course. The assessment is open-ended and qualitative in nature. It is marked out of
100 and contributes a maximum of 60 marks to your final score. Lab2 is assessed
in similar manner to Lab1, so feedback from the Lab1 can guide you in performing
Lab2 (with the exception that the latter has around four times more time available
for your work, and therefore should be commensurately bigger).

This is an advanced course and the project assessment in particular is intentionally
open-ended. There is no single right answer! If you’re unsure about how much
effort to expend the rule of thumb is to put in as many hours as is reasonable for a
10 credit module (see above; perhaps 8 or 10 hours per week).

We’ll give more detailed guidance in relation to each of the assessments as they
occur; the things to remember to begin with are that:

• the first lab assessment and the exam are both pass/fail; youmust pass these
• the second lab assessment (the project) will determine your final classification
for the course (pass, 3rd, 2nd, 1st)

1.3 COM3505 Week 00: Preliminaries

This section describes stuff to do before you start the course:

1. We will communicate with you using Git and GitLab, both to deliver course ma-
terials and assignments to you, and for you to submit coursework to us. Therefore
you are not fully enrolled for the course until you set up an appropriate git
repository and give us the details. Do this ASAP!

20 Hamish Cunningham

https://git-scm.com/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

2. Spend some time getting to know git and the other tools we’ll be using. (The
Linux command line is powerful, elegant and, to newcomers, challenging. Using
git from the command line adds another set of challenges. A bit of preparation will
help!)

3. Refresh your memory of the Diamond Electronics lab safety protocols. You can-
not participate in lab sessions without having completed the safety work.

Details follow.

1.3.1 Setting up your Git Repository

NOTE: the images below say “2021” in them, whereas you need to use “2024,” and
there are a few minor changes in the current version of GitLab.

First register an account on GitLab.com if you don’t have one already. Use your
Sheffield email address (ending in @sheffield.ac.uk) to register. (NOTE: be sure
to use https://gitlab.com/ and NOT the Sheffield-based GitLab server, which is
being phased out.)

Second, create a private repository (project) there (from the “blank project” op-
tion) called com3505-student-2024:

Hamish Cunningham 21

http://shop.oreilly.com/product/0636920042174.do
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://gitlab.com
images/gitlab-create-project.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(Make sure to select the Initialize repository with a README option.)

Third, go to the Project Information members settings…

22 Hamish Cunningham

images/gitlab-create-project.png
images/gitlab-create-project.png
images/gitlab-add-hamish-1.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

…and add hamishcunningham…

Hamish Cunningham 23

images/gitlab-add-hamish-1.png
images/gitlab-add-hamish-1.png
images/gitlab-add-hamish-2.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

…as a project maintainer:

24 Hamish Cunningham

images/gitlab-add-hamish-2.png
images/gitlab-add-hamish-2.png
images/gitlab-add-hamish-3.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Lastly submit your GitLab user name to our server (see next section).

1.3.2 Tell us your Account User Name on GitLab

Your user name (or “ID” for our purposes) is the name you log in with, and
appears in the URL of the site when you’re logged in. For example, Hamish’s
user name / ID is hamishcunningham and his public GitLab projects appear at git-
lab.com/hamishcunningham (and GitHub ones here, and SourceForge here, and
Docker images here…).

We need to know your username and match it up with your student record so that
we can pull the coursework that you commit there. Tell us your username by filling
in the form linked from the Blackboard page.

Note: don’t send your numeric ID from GitLab, but the alphanumeric user name /
path that appears in your project URLs. (Mine is hamishcunningham.)

1.3.3 Good Tools to Learn

To create and deliver the course we use most or all of the following tools. You can
follow the course without using the command line, but we recommend learning it

Hamish Cunningham 25

images/gitlab-add-hamish-3.png
images/gitlab-add-hamish-3.png
https://gitlab.com/hamishcunningham/
https://gitlab.com/hamishcunningham/
https://github.com/hamishcunningham
https://sourceforge.net/u/hcunningham/profile/
https://hub.docker.com/u/hamishcunningham

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

if you can; it is debatable that you’re ever really in control of a machine for which
your only interface is a GUI (especially when that GUI is closed source).

It is a good idea to get to know at least Git and if possible the ESP and Arduino
tools before starting (though you should be able to pick them up as we go along if
needed).

• Git and (see above) GitLab; other useful material here
• Ubuntu GNU Linux and/or RaspiOS16

• command-line interfaces (accessed on Linux via the Bourne shell)
• the Espressif IoT Development Framework, along with the ESP32 Arduino com-
patibility layer (or “core”)

• the markdown text formatting language
• Docker containers (for development environment portability)

In addition we will need a code editor or Integrated Development Environment (IDE)
for writing IoT device firmware in C and C++, e.g.:

• Arduino IDE
• VSCode
• PlatformIO
• Eclipse
• Vim17

• etc.

We’ll cover how to set up these tools next week.

1.3.4 STAYING SAFE in the Electronics Lab

Parts of the practical work for the course are best done in the Diamond Electronics
Laboratory (DIA 2.02), and we have sessions available each week of the course in
2024. You are also entitled to use the facilities in the iForge (the Diamond 1.01
project space, see next section) if you need more time, though do make sure to
register with them before trying to gain access.

The electronics lab is a fantastic learning environment, and we give you as much
time in there as we can during the course. It is also a potentially dangerous
environment. Before coming to any lab session you must do the following:

• watch this safety induction video
• read this risk assessment

Soldering is optional this year (but definitely a useful skill for IoT prototyping); if
you want to do soldering in the lab, please also watch this tutorial video.

Please follow University guidelines relating to covid-19 at all times!
16Or an equivalent emulation environment like Cygwin, WSL or a VM or a container.
17Emacs? What’s that?

26 Hamish Cunningham

https://git-scm.com/
https://gitlab.com
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://ubuntu.com/
https://www.gnu.org/
https://www.linux.org/
https://www.raspberrypi.org/software/
https://www.linuxjournal.com/content/end-command-line
https://ryanstutorials.net/linuxtutorial/
https://ryanstutorials.net/bash-scripting-tutorial/
https://docs.espressif.com/projects/esp-idf/en/stable/get-started/
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://www.docker.com/
https://en.wikipedia.org/wiki/Arduino_IDE
https://code.visualstudio.com/
https://platformio.org/
https://www.eclipse.org/ide/
https://www.vim.org/
https://drive.google.com/file/d/1ferKqsI9TpFRWd2Tg9Hn7-Kgcl0jgmPz/view?usp=sharing
https://drive.google.com/file/d/1t3yR19Rm325Irb2Q4uT5LxunS-4X8al4/view
https://digitalmedia.sheffield.ac.uk/media/1_q13s0j3j
https://www.cygwin.com/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1.3.5 Using the iForge

The iForge is the University’s student-led makerspace that provides workshop and
making facilities outside the scope of your degree. If you would like to use the
iForge there are a couple prerequisites:

• register online (UoS VPN / Eduroam access required) or in person
• sign the user agreement (UoS VPN / Eduroam access required)
• completed the two compulsory training courses
• completed the hot tools training (if you want to solder)

If you would like to find out more about the iForge feel free to check out their linktree
or head to DIA 1.01 to find out more in person.

1.4 COM3505 Week 01 Course Notes

Have you done the preliminaries?? If not, now would be a good time :)

1.4.1 Learning Objectives

Our objectives this week are to:

• read up about how the course works, and start reading about the IoT
• create your own gitlab repository, and formally enrol on the course
• pick up your parts kit, and start understanding how to prototype basic circuits
on a breadboard

• start getting to know the electronics lab

1.4.2 Assignments

• You should have already created a Git repository for the course and sent us
your GitLab user name (see above). If not do it now!!!

• Revise (or learn) how to use Git and practice working with your repository; see
below.

• Make sure you’ve read all of chapter 1 of these notes, and ideally read chapter
2 before the start of week 2.

• Have a look at the references listed in Further Reading.
• Work through the lab introduction sheet (see below).

1.4.3 Working with your Git Repository

The assessment of your practical work on the course is delivered by checking in to
your git repository and pushing to the “origin remote” (on gitlab.com). If you don’t

Hamish Cunningham 27

https://iforgesheffield.org
https://iforge.sheffield.ac.uk/usersignup
https://iforge.sheffield.ac.uk/viewagreement
https://training.iforge.shef.ac.uk/subject-areas/general-workshop-safety/online
https://training.iforge.shef.ac.uk/subject-areas/hot-tools/online
https://linktr.ee/iforgeuos
https://gitlab.com

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

push anything, we won’t be able to give you feedback or to mark your work, so it
is important to get used to this system early on.

Check out your repository from gitlab into your own file space (the first time you
start work on a new machine):

• git clone ...url..., for example: git clone https://gitlab.com/YourGitLabUname/
com3505-student-2024.git

• (don’t “download” from gitlab, you need to “clone”)
• (don’t “change your path” on gitlab or our scripts won’t find your reposi-
tory)

Other common commands:

• use git status to tell you what the current state of your file tree is, and git diff
to show detailed changes

• to add new files to the repository: git add file-path
• to commit all changes locally: git commit -vam 'a commit log message'
• to push committed changes back to GitLab: git push
• to pull down new changes from GitLab: git pull
• to stop the annoying messages about configuration, do the commands sug-
gested (e.g. to set your email address)

• to stop having to type username/password all the time, create an ssh key and
register it with GitLab)

• to lower your blood pressure when subjected to ridiculous git error conditions:
go for a walk, hum a cheery tune, or try thinking about a career as a florist

Note: git (and GitLab / GitHub) have become industry standards in recent years, so
it is important for you to get to know at least the basics. However, an independent
survey of experts recently estimated that of 2,153 git command options, fully 213%
were either contradictory, confusing or error-inducing (or all three). [I may have
made that bit up.] It is depressingly easy to get git into a mess! [I didn’t make that
bit up.] What to do? Here’s one way to escape from git hell…

Let’s say you have conflicts in your com3505-student-2024 repository and the process
of resolving them is proving difficult. To re-create a clean version of the repository
(in your home directory):

1 cd
2 mv com3505-student -2024 saved-repo
3 git clone https://gitlab.com/YourGitLabUname/com3505-student -2024.git

You’ve now got a fresh copy to work with; if you have changes in the saved version
you can copy them over to the new, then commit and push from there.

Yes, it was called ‘git’ for a reason…18

18Linus Torvalds quipped “I’m an egotistical bastard, and I name all my projects after myself. First
‘Linux,’ now ‘git.’ ”

28 Hamish Cunningham

https://docs.gitlab.com/ee/ssh/
https://docs.gitlab.com/ee/ssh/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1.4.4 First Lab Checklist

This section describes what to do in your first lab session:

• Make sure you have been given a hardware kit.
• Hardware 1:

– Check the Standard Operating Procedure for the kit, and make sure you
have identified any safety issues relating to the work. If in doubt, stop
work and contact a member of staff.

– Work through COM3505 DIA 2.02 Introduction to practice breadboarding,
soldering (this is optional for the 2024 course) and using a multimeter:
(please pay particular attention to the safety protocols for the
electronics lab described there).

• Finished? Learn a little C!
• Couldn’t get through it all? Don’t worry too much; you can catch up in the
iForge, or next week, or just by reading up on the theory. We’re not assessing
you until week 7/8, so at this point the important thing is to start getting a
flavour of the work.

If you finish early youmight also want to learn aboutmeasuring simple values (using
the multimeters and/or oscilloscope), but this is optional.

The hardware kits give you an ESP32 net-connected microcontroller, sensors and
actuators, and the means to prototype experimental circuits: the foundations of IoT
hardware.

For reference each kit should contain:

• plastic box
• the “Workstation 1” LED kit (a small PCB with two LEDs, resistors and solder)
• ESP32 feather board, with stacking headers pre-soldered
• breadboard
• 5 x 3mm red LED
• 5 x 3mm green LED
• 5 x 3mm yellow LED
• USB C cable
• matrix board (25 x 15)
• 12 x 120Ω resistors
• 180Ω resistor
• 4.7kΩ resistor
• 220kΩ resistor
• 1MΩ resistor
• push button switch (through hole, i.e. ok for breadboarding)
• 10 way ribbon cable (or equivalent solid core wire pieces; spare pre-cut wire
is available in the lab)

Hamish Cunningham 29

https://docs.google.com/document/d/1_VGI6EtR8pLvWGsDMlA5Ip3cP2dmz17nsfIGJMxqyho/edit?usp=sharing
https://goo.gl/GkGvJT

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(In the second half of term we’ll give you additional hardware for your project as
necessary. Enjoy!)

1.5 Further Reading

• (Schneier 2017)19 “Click Here to Kill Everyone.” NY Mag, January 2017.
• (Ashton 2011) “That ‘Internet of Things’ Thing.” RFiD Journal 22 (7) 2011.
• Like many embedded electronics and IoT developers, we use the Linux
command-line (otherwise known as shell or bash, often running in a terminal)
to do many of our tasks. On MacOS an old version is available by default;
update like this. Ports of these tools are also available for Windows (try
Cygwin, Git Bash, Windows Subsystem for Linux, or perhaps an Ubuntu VM
or a container via Qemu, LXC or Docker). If you find these tools difficult then
please read up on them and practice. See also the links about tools above.

• (Doctorow 2019) “Unauthorized Bread,” Cory Doctorow (in Radicalized, 2019).

19If you’re reading this as a GitLab ‘.mkd’ file (e.g. on gitlab.com or a checked-out repository), cita-
tions don’t link anywhere. Try the PDF or the GitLab Pages version to find the references.

30 Hamish Cunningham

http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://itnext.io/upgrading-bash-on-macos-7138bd1066ba
https://iot.unphone.net/micasa-su-botnet.pdf
https://iot.unphone.net/

2 Definitions, and a Burning Question

When you can measure what you are speaking about, and express it in num-
bers, you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meager and unsatisfac-
tory kind: it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the stage of science. (William Thompson)

Not everything that counts can be counted, and not everything that can be
counted counts. (Albert Einstein)

Low cost networked computers are adding eyes and ears (or sensors) and arms, legs
and voices (or actuators) to the Internet. These new devices are being connected
to on-line brains (big data and deep learning in the cloud)1. This new field is the
IoT, of course. Will the result be a ‘world robot’ (Schneier 2017)?! This chapter
will start to cover some of the context and history of the IoT. Chapters that follow
will cover the hardware that makes it possible, the communications protocols and
security systems it relies on, and the cloud-side analytics that make sense of the
data it produces.

The practical work this week is to getting to know the SDKs and IDEs2 that allow us
to develop software (or firmware3) for the net-connected microcontrollers that are
the foundations of IoT devices.

We’ll begin with a couple of definitions, then look at the genesis of the software
ecosystem that we’ll be using to program our IoT devices, before moving on to the
practical question of development tools.

2.1 Defining the IoT

There are many definitions of the Internet of Things (IoT); one of the most exciting
is given by Bruce Schneier in his provocative piece Click Here to Kill Everyone:

1Not to mention Artificial Intelligence (AI) – see sec. 6.1!
2SDK: Software Development Kit; IDE: Integrated Development Environment.
3The term firmware refers to the level at which the programs we upload to microcontrollers runs. It
is, technically, software, but it is so low level that it is almost hardware; hence: firmware :)

31

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

…the Internet of Things has three parts. There are the sensors that collect
data about us and our environment… Then there are the “smarts” that figure
out what the data means and what to do about it… And finally, there are the
actuators that affect our environment. … You can think of the sensors as the
eyes and ears of the internet. You can think of the actuators as the hands
and feet of the internet. And you can think of the stuff in the middle as the
brain. We are building an internet that senses, thinks, and acts. This is the
classic definition of a robot. We’re building a world-size robot, and we don’t
even realize it. (Schneier 2017)

At the other extreme the IoT is about what becomes possible when networked mi-
crocontrollers become cheap enough to embed in very many everyday contexts,
from central heating thermostats to garage doors. These devices face tight con-
straints of power usage and cost, and concomitant challenges to their security and
functionality. They also quickly become extremely numerous, driving work on big
data analytics and cloud computing.

The technology of networked devices goes back perhaps 50 years or more. The
coining of the term itself is often credited to Kevin Ashton in 1999, while working at
the Auto ID Center at MIT (Ashton 2011), of which more later.

2.2 Revolutionary Code: from MIT Printers to the Arduino

If we understand the past we stand a better chance of seeing into the future. Where
did the IoT come from? Where did the systems we’re going to be coding with come
from? Later on we’ll learn about an embedded electronics ecosystem that brought
the needs of Italian artists together with the origins of the operating system that
drives much of the internet and the compiler suite that has been ported to more
architectures than any other… and spawned the Arduino.

But first: do you own a phone?

You are very probably carrying a phone, but do you own it?! Call me an old stickler,
but I think that if I own something then:

• I can take it apart and see what it contains
• I can modify it
• I can repair it

Do those things apply to your phone? How about your laptop? Your tablet? In the
2020s we often pay for electronics which the people who sell then claim we will own,
but if we take the trouble to read the licencing documents that accompany them
we often find that we have few rights over them, and that repair, for example, is
expensive or difficult or voids the manufacturer’s warranty. Much of the electronic

32 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

and computational ecosystems we’ll spend most of our time with in this course
arose from a similar realisation some 50 years ago.

2.2.1 Return with me to Boston in the 1970s…

Back when I was a wee small snotty thing, and many of you were only minute
folds in the quantum potential of possible future universes, the PDP 10 was a cool
computer:

4

It was the first machine to make time sharing (ormultitasking) common, and it had
a huge maximum memory of… a whole megabyte!5

The operating system code (assembler) on the PDP 10 and its immediate cousins
was routinely shared and improved by a community of programmers (or “hackers”6)
at MIT, including one Richard Stallman.
4Wikimedia.
5Recently the sucessor computer to the PDP10, the PDP11, has been completely emulated on an
ESP32!

6‘The use of “hacker” to mean “security breaker” is a confusion on the part of the mass media.
We hackers refuse to recognize that meaning, and continue using the word to mean someone
who loves to program, someone who enjoys playful cleverness, or the combination of the two.’
(Stallman 2002)

Hamish Cunningham 33

images/pdp10.jpg
https://upload.wikimedia.org/wikipedia/commons/3/35/PDP-10_1090.jpg
https://www.hackster.io/news/tiny-3d-printed-dec-vt-102-hides-a-fully-functional-esp32-powered-pdp-11-minicomputer-ac427f15b19d
https://www.hackster.io/news/tiny-3d-printed-dec-vt-102-hides-a-fully-functional-esp32-powered-pdp-11-minicomputer-ac427f15b19d

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

2.2.2 Whaddya Mean, I can’t Fix It?!

As computing companies became bigger and more profitable in the 1980s practices
began to change: there started to be no more access to source code, and users
would have to sign an NDA7 even to get access to a binary. Stallman suffered the
consequences of an aversion to NDAs when he was refused access to the source for
a printer control program, even though his intention was to improve that program.
He says: ‘This meant that the first step in using a computer was to promise not to
help your neighbor. A cooperating community was forbidden. The rule made by
the owners of proprietary software was, “If you share with your neighbor, you are
a pirate. If you want any changes, beg us to make them.” ’ (Stallman 2002)

2.2.3 What To Do?

’So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to
make a community possible once again?

The answer was clear: what was needed first was an operating system. That
is the crucial software for starting to use a computer. With an operating sys-
tem, you can do many things; without one, you cannot run the computer at
all. With a free operating system, we could again have a community of coop-
erating hackers—and invite anyone to join. And anyone would be able to use
a computer without starting out by conspiring to deprive his or her friends.’
(Ibid.)

And this is what lead to the kernel code that runs your Android phone, the GNU/Linux
operating system that runs the majority of servers in the cloud, and the compiler
code you’ll use to create firmware to run on the ESP32 in this course…

Why does this matter?

• If you want to build quickly you need to stand on the shoulders of giants. Open
source software has been so successful in the years since Stallman started
work on GNU that we’ve come to take it for granted, but imagine that you had
to start every project from scratch – we’d be working at a small fraction of the
pace that is possible using the free libraries, tools and operating systems out
there.

• If you want to build well, you want the building blocks to have been tested,
tested, and tested again. Open source projects have become ubiquitous and
often far more widely used than their closed equivalents.

7NDA: Non-Disclosure Agreement. If you’re considering signing one of these read it VERY carefully!

34 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• If you want to make money from software, you need to be popular! Sharing
code is often a prerequisite, and your commit history on github or gitlab is
frequently taken into account when applying for jobs.

• There’s no security without code audit, and if there’s no code that you have
access to, there’s no audit… (One of the latest in a long string of examples is
the Solar Winds hack; no user of this closed system could see into it, or check
what its updates were doing.)

And, perhaps most important of all, we have been describing the genesis of the
whole free and open source software movement, which has been responsible for
huge portions of the code running our world, and which in combination probably
constitute the most complex machine ever constructed. Where will it go? Where
will humanity go, locked into a triple crisis of pandemic, environment and economy?
The two questions are (perhaps uncomfortably) tightly linked.

Ok, enough context for now. We’ll come back to IoT history next week; now for
something practical :)

2.3 Coding Support Tools: IDEs, SDKs, Libraries

When we write code to run on a microprocessor (e.g. on your laptop, phone, or that
Cray you have in the garden shed) we use all the facilities of the operating system, a
modern programming language and its library ecosystem to insulate ourselves from
the underlying hardware and to provide a set of abstractions, APIs and components
that can make us productive at high speed. In recent times we have started adding
on-line cloud APIs to the mix, making our potential deployments of computational
resource truly vast.

On amicrocontroller like the ESP32 in your kits, we have a lot less support: program-
ming is typically with low level languages (C, C++, occasionally bits of assembler),
the ‘operating system’ is more like a task management library, and the develop-
ment tools are often cranky and basic. Firmware usually has to be uploaded to the
device over a serial line or JTAG connection, and the tooling to perform this task is
different for every hardware family.

In some cases a new world of Javascript or Python programming and drag-and-drop
upload (e.g. over USB mass storage class) is starting to become available for the
IoT, but:

1. this is not yet widespread
2. it still uses the manufacturer’s C libraries under the hood

The second of these points in particular means that projects that need to use the
hardware efficiently and to exploit all of the available facilities will most often write
in C/C++.

Hamish Cunningham 35

https://www.schneier.com/blog/archives/2020/12/russias-solarwinds-attack.html

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(Not convinced? See Appendix B for how to use Python on the Feather S3 and the
unPhone. In fact Python is becoming a good choice for IoT prototyping at least,
especially if you already know it.)

This section begins by looking at the basic (toolchain, SDK and library) building
blocks of development on the ESP32, then goes on to describe available develop-
ment environments. Later on (section 2.6.4) will talk you through installing your
own development environment and taking your first steps in programming an IoT
device.

2.3.1 Toolchains: In the Beginning, There Was The C Compiler…

In any novel embedded system the foundational step is to port a C compiler to
the new chip. The compiler, linker and the tools that take a binary image and
burn it into the memory space of the device (in a form that can then be sucked
up by a bootloader and turned into a running process) are called collectively the
toolchain. The compiler is generally an unusual beast, as it has to run on one
platform (your development machine, x86_64 perhaps) but produce binaries for a
different architecture (Xtensa being the one on the ESP32 in your parts kit, or RISC-V
the coming thing); i.e. we need a cross compiler. So when installing a development
environment for the ESP32 we need to pick up the Xtensa port of GCC (the GNU
Compiler Collection, aka GNU C Compiler).

There’s good news and bad news about this step:

• the good news is that Espressif, the ESP32’s manufacturer, provides various
convenience scripts and build system targets to download and configure the
appropriate toolchain

• the bad news is that there are a lot of versions, they tend to be pretty complex
to work with and they are sometimes incompatible with each other, or with the
local Python installation8.

There are snakes in the long grass, wear your wellingtons.

2.3.2 ESP-IDF, FreeRTOS and the ESP32 Arduino Core

A compiler, when ported to an IoT microcontroller, will open up the magical gates
of productivity and allow you to do… not very much at all! The differentiators be-
tween the (many) different chips competing for IoT oxygen relate to their hardware
facilities, and to access these we almost always need more than is provided by the
8Python’s release policy: if it isn’t incompatible with all previous and future versions, add some
library dependencies to abandoned projects that fail to compile on all target architectures, a new
virtualisation environment to deal with different Python versions and a new language feature that
gets activated at random depending on what day of the week it is and what flavour of tea you’re
drinking.

36 Hamish Cunningham

https://gcc.gnu.org/
https://gcc.gnu.org/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

standard C library. (On the smaller, more resource-constrained devices, the stan-
dard library may not even be present due to lack of space; in the case of the C++
library this is actually quite likely.) In order to sell chips, then, the microcontroller
manufacturer needs to supply a set of libraries that expose the hardware function-
ality of its wares in as friendly and powerful a way as possible.

On the ESP32 there are two main layers that we will be dealing with in some detail
(and a third which we’ll touch on here and there):

1. the native SDK, ESP-IDF (which is mostly written in C)
2. a compatibility layer, or Arduino core, that integrates with the Arduino lan-
guages (mostly C++) and libraries

3. a real-time task and event management library, FreeRTOS

We’ll describe each of these in the rest of this section; section 2.6 below will start
us off on the process of installing and running the various SDKs, libraries and devel-
opment tools that we need to learn.

2.3.2.1 ESP-IDF

Espressif, maker of the ESP32, provides an SDK and library set called ESP-IDF,
or Espressif IoT Development Framework, whose development is hosted as open
source on GitHub (Oner 2021).

ESP-IDF has grown to be a large and successful open source project that incorpo-
rates ports of many other libraries to ESP hardware. For example, MbedTLS (source
code) is a very popular small footprint cryptographics library (supporting certificate-
based security and the TLS protocol that underlies security on the web via HTTPS).
Espressif support a port of MbedTLS (documented here, source here) that exploits
the ESP32’s hardware acceleration facilities for tasks like random number genera-
tion or hashing. This hides the peculiarities of the ESP’s underlying hardware from
the programmer, who can instead use familiar and well-documented abstractions
as surfaced by the MbedTLS library.

Other libraries that are supported for the ESP32 via ESP-IDF include:

• lwip: a complete TCP/IP stack
• spiffs: filesystem over the SPI protocol (for flash RAM)
• protobuf-c: protocol buffers serialisation format
• mqtt: the MQTT publish-subscribe messaging protocol
• coap: the CoAP communication protocol
• lots of others!

In each case IDF adapts the library to particularities of the underlying hardware,
making it easier for programmers to exploit the chip to its full potential without
learning about the grungey details of which register does what under what condi-
tions.

Hamish Cunningham 37

https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/
https://www.trustedfirmware.org/projects/mbed-tls/
https://github.com/ARMmbed/mbedtls
https://github.com/ARMmbed/mbedtls
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://github.com/espressif/esp-idf/blob/master/components/mbedtls/port/include/mbedtls/esp_config.h

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Whenever we write code for the ESP32 we will be using ESP-IDF APIs, either directly
or indirectly. To begin with, the easiest way is to use them indirectly, letting the
Arduino compatibility layer take the strain (see below).

As of early 2024 there are two main versions of IDF that we will come across:

• 4.4.x: the last version 4 release, and the most stable platform for ESP pro-
gramming in the last several years; we will default to using this version

• 5.1.x: the latest stable release; 5.0 was a release with a lot of new stuff and
various breaking changes, particularly in the build system, so I haven’t up-
dated all of the course material to this version as yet; (if you’re trying to pro-
gram one of the most recent ESP32 chips that aren’t supported on version 4,
or other bells and whistles, then you’ll need this version, with Arduino Core
3.0.0 alpha 3 at time of writing)

From version 4 IDF changed its principal build system from GNU Make to CMake,
and this has made supporting multiple versions quite complex. (In version 5 GNU
Make is deprecated.) There are three scripts provided by the distribution that set
up the environment needed for the build systems to work:

• idf.py: a Python script that wraps the build system and provided commands
like flash (to burn firmware) and monitor (to listen on serial); this lives some-
where like ~/esp/esp-idf depending on how you’ve set up the install (~/the-
internet-of-things/support/tooling/esp-idf if you’re using the setup scripts sup-
plied for this course)

• export.sh9: a shell script that sets up variables including IDF_PATH, the location
of the IDF file tree; this also lives in esp-idf

• activate: a Python venv (virtual environment) script that sets up PATH etc. to
pull in the requisite flavour of Python; this lives in ~/.espressif; a common
cause of errors is that the virtual environment gets out of sync with the rest of
the IDF install10

Each of these has changed and evolved over different versions of IDF, and they
present a difficult moving target to IDEs and automation scripts like Eclipse, Plat-
formIO and VSCode. (It is also a rapidly changing system integrating many 3rd
party libraries.) This means that it has previously been quite challenging to get a
4.4.x IDF setup working with the Arduino layer. Luckily this has mostly passed, with
the 2.0.6 release of the Arduino core being based on 4.4. We’ll start with 2.0.6 for
our work; versions through 2.0.14 should also work fine. (Version 5.1 looks good,
but the Arduino Core hasn’t quite gone to its matching version 3.0.0 yet.)

An additional complexity is that IDF provides a configuration tool, menuconfig (based
on the KConfig language), originally developed for the Linux Kernel. This exposes
9This, and everything else, will be called something different (e.g. export.bat) on non-unix
platforms.

10When this happens, deleting the relevant tree from ~/.espressif/python_env and re-running esp
-idf/install.sh can help.

38 Hamish Cunningham

https://github.com/espressif/esp-idf/releases

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

many of the optional features of IDF and of the libraries it incorporates. To use
it you have to be doing a native IDF build of one type or another (which means
you can’t easily use it in the Arduino IDE). Some of its capabilities are mirrored in
configuration that is exposed by the Arduino core, but not all.

2.3.2.2 FreeRTOS

Another important facility that we can access via the Espressif SDK is FreeRTOS,
an open source real time ‘operating system’. FreeRTOS provides an abstraction for
task initialisation, spawning and management, including timer interrupts and the
ability to achieve a form of multiprocessing using priority-based scheduling. The
ESP32 is a dual core chip (although the memory space is shared across both cores,
i.e. it provides symmetric multiprocessing, or SMP). FreeRTOS allows us to exploit
situations where several tasks can run simultaneously, or where several tasks can
be interleaved on a single core to emulate multithreading.

This doesn’t necessarily make life simpler! Most microcontroller code, at least in the
hobbyist and maker spaces, is written to target single core chips, and the potential
for shooting yourself in the foot rises very quickly when trying to adapt to a world
where multiple things may be happening (or at least seeming to happen) all at
once. Who owns this piece of memory? What will happen when two tasks both try
and talk over this bus? Why does my code behave differently if I pause a task for
a few microseconds? To begin with at least, it may be easier to limit yourself to
a single task that runs an infinite loop, and worry about FreeRTOS later on. (This
is what happens, in fact, when we delegate our main program entry point to the
Arduino “core” for ESP32: the setup and loop procedures which characterise Arduino
programming are implemented for us using a FreeRTOS task, but we don’t have to
worry about the details.)

Later on, interrupts, tasks, event queues, mutexes and semaphores will all become
objects of interest, and if you’ve a mind to dive into the mysteries of FreeRTOS
that’s where you’ll find them. Enjoy!

2.3.2.3 The Arduino Core for ESP32

Fairly early in the lifetime of the ESP32’s predecessor chip, the ESP826611, a Bul-
garian developer going by the somewhat cryptic moniker of me-no-dev decided that
what was needed was integration with the Arduino ecosystem. He set out to de-
velop a compatibility layer between Arduino libraries and development tools and
11During our tale Espressif’s love of easily understandable product names and narrative coherence
will often be in evidence; a recent example is an apparent intention to name an ESP32 successor
that uses a completely different instruction set and architecture – RISC V – the ESP32-C3. Good
to see them sticking to their guns and being just as thoroughly mystifying for new stuff as they
were for old.

Hamish Cunningham 39

https://www.freertos.org/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

the ESP8266. The work rapidly captured the imagination of a large number of de-
velopers, and has become a mainstay of the ESP community: nowadays there are
commits from more than 500 people in the github repos, and perhaps 10,000 com-
mits overall. Espressif could see that this was a good thing: they hired me-no-dev
and he now works full time on the “Arduino core” for the ESP32. The project can be
found here.

What’s an Arduino core when it’s at home? I’m not sure where the term origi-
nated, but it basically means all the code that interfaces a device and its toolchain,
compiler settings, and libraries to a) other Arduino library code and b) the Arduino
IDE. This piece of kit is incredibly useful, because the Arduino ecosystem ismassive.
Pick up any electronic component (sensor, actuator, dog brush or kitchen sink) and
the likelihood is that someone has published an Arduino-compatible library for it.
This makes programming from the Arduino APIs hugely more productive than oth-
erwise, because we’re almost always working from widely used running code. Win
win win!

Motherhood, apple pie, happy ever after. Except: VERSION HELL!!!

2.3.2.4 Version Hell!!!

When we program the ESP32 we’re typically using C code from ESP-IDF, C code from
the libraries that have been ported to the ESP chip family and included as part of
ESP-IDF, C++ code that translates between ESP-IDF and the Arduino APIs, and C++
code that exposes sensor and actuator hardware within the Arduino ecosystem. (All
of these are in active development, and all have their own release cycles.) We are
then compiling this morass with a toolchain that has its own version trail, controlled
by a build system that comes in a whole bunch of different and subtly incompatible
flavours and, finally, uploading it to the IoT device using a Python script written
in … erm, Python (possibly one of the least stable programming languages ever
devised12).

Hmmm.

The types of things that tend to go wrong are:

• one library needs a particular version of the C compiler, but another needs a
different version

• the build system (e.g. CMake, GNU Make, Ninja, the idf.py script from Espres-
sif, custom scripts provided by library developers, the Arduino IDE or CLI, Plat-
formIO, VSCode, Eclipse, …) expects one shape of file tree, but in the current
version things have changed

12Python undoubtedly has many fine qualities. In fact I wish I knew it better, and used it more. It also,
unfortunately, has its own particular VERSION HELL, which does tend to complicate life a little here
and there.

40 Hamish Cunningham

https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
http://www.hackerfactor.com/blog/index.php?/archives/825-8-Reasons-Python-Sucks.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• the release of the Arduino core that you want to use includes a static version of
ESP-IDF, but you need to reconfigure the latter to tailor its features, and can’t
get the reconfigured version to match the static version in the core

• you start making rather poor jokes about the boss wanting you to wear a silly
hat when programming

• your head explodes and your family disown you after clearing up all the mess
• you realise that you’ve actually gone a bit daft and those people in white coats
at the door have turned up to drag you off to a secure institution1314 1516

So: if things go wrong, don’t worry. You’re not alone. Section 2.6.4 tries to map out
a path of relatively easy and reliable options. But first, let’s round off this discussion
with a look at the available build system CLIs and IDEs.

2.3.3 Developer Tools: CLIs and IDEs

The game, lest we forget amidst all this gratuitous verbiage, is to (cross-)compile
our code against 1001 IoT and embedded systems libraries and burn the resultant
firmware images to an ESP32. Along the way it might be nice to throw in a bit of:

• code completion and syntax highlighting
• compiler error message interpretation
• serial communications monitoring (so we can see messages coming off the
microcontroller with low overhead)

• runtime exception interpretation
• debugger support
• test suite automation

We have two main families of options for doing (some subset of) these things:

• integrated development environments (IDEs), and dedicated code editors
• command-line interface (CLI) build systems

Examples of IDEs include:

• Arduino IDE (ArdIDE): originating from the Arduino project, this is a Java desk-
top application which is a great place to start work with IoT programming, but
is fairly basic in comparison to more recent IDEs.

• Arduino Create, including a web-based IDE. This is relatively new, and could
be a good option, but I haven’t had time to evaluate it as yet.17

13No! I’m not coming! You’ll never take me a….
14Subsequent lectures will be provided by our backup lecturer.
15Don’t worry, they’re quite sane.
16So far.
17If you try Arduino Create (or Arduino CLI) and have spare time, why not fork this repository on
GitLab, add a section about how it went and make a pull request?

Hamish Cunningham 41

https://www.arduino.cc/en/software
https://www.arduino.cc/en/Main/Create
https://gitlab.com/hamishcunningham/the-internet-of-things
https://gitlab.com/hamishcunningham/the-internet-of-things

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• Eclipse: possibly the biggest IDE ever built! Full-featured, but has a reputation
for complexity. If you know Eclipse already and don’t mind experimenting a
bit this could be a good choice.

• PlatformIO: an IoT build system abstraction layer. To some degree, PlatformIO
is an ambitious attempt to maintain firmware infrastructure for a very large
number of IoT device types. The development team is energetic and commit-
ted, but this is a big task! PlatformIO integrates IDF and the Arduino core, but
until recently has suffered a little from the version problems discussed above.
Simple cases probably work out of the box, but more complex configurations
sometimes not. In 2024 it is stable though, and a good choice.18

• VSCode: probably the leading pure code editor in 2024 (and Microsoft’s first
successful attempt to cozy up to open source developers). The C/C++ tools
are good, and the ecosystem of plugins large and well-supported. You can use
VSCode as standalone editor, or via a PlatformIO plugin, or a dedicated ESP-
IDF plugin. (The latter is fairly new, and may not support Arduino projects very
well, but may be worth a try!)

• Vim, which actually trounces all the other options hands down, but does require
you to remember command sequences like gUw and ZZ and :r! column -t. All the
best people use it.

• Did someone mention Emacs? What’s that?

Examples of CLI build systems include:

• ArdIDE called from the command line (not to be confused with the separate
Arduino CLI system, which I also haven’t found time to evaluate as yet)

• PlatformIO CLI (aka, confusingly, PlatformIO core)
• Peter Lerup’s makeEspArduino, which layers on both GNU Make and the build
metadata present in the Arduino cores

• IDF + GNU Make or CMake on top of Ninja or GNU Make and/or via idf.py (in
which case we can actually end up using a Python script to call CMake which
may then call GNU Make, which then calls back to Python to talk to the ESP32
and provides a keyboard shortcut which will under certain circumstances then
call back to CMake, which then….)

• Docker images from Espressif or the the image supplied for this course)

I was talking to someone recently who works at one of the big semiconductor com-
panies (the one that specifies the architecture used by the chip in your phone) about
the difference between microcontrollers and microprocessors and remembering all
the weird challenges that the former tend to throw at you. “Welcome to embedded,”
she smiled, where getting your toolchain installed can be a week’s work :)

18At time of writing (early 2024) it supports both IDF 4.4.x and 5.x, but we mostly use the former in
our examples.

42 Hamish Cunningham

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/eclipse-setup.html
https://platformio.org/
https://code.visualstudio.com/
https://platformio.org/install/ide?install=vscode
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/vscode-setup.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/vscode-setup.html
https://www.vim.org/
https://www.arduino.cc/pro/cli
https://docs.platformio.org/en/latest/core/index.html#piocore
https://github.com/plerup/makeEspArduino
https://www.docker.com/
https://hub.docker.com/r/hamishcunningham/iot/tags

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

2.4 Cross-Platform Development with Containers

We’ve looked a little at the complexity of the development ecosystem for typical
IoT (net-connected microcontroller) devices, and mentioned the plethora of support
tools that are available just for the device which this course is based on. Before we
move on to practical work, a digression on solving the cross-platform problem for
these tools.

Many embedded system projects use some variant of Linux as their host environ-
ment. Linux is the only widely-used operating system in which predictable and
repeatable builds are straightforward, and the only environment where we can be
confident that we’re using amaximally open (and auditable) codebase. The support
tools we provide for this course (e.g. magic.sh) require the core GNU/Linux toolset
to work.

What if we’re forced to use a different platform, e.g. Windows or MacOS? There
are many answers, going back to venerable emulation projects like Cygwin or
more modern techniques like virtualisation, but the up-to-the-minute answer is
to use containerisation. This section revises a little recent history in that field
(and touches on the way that continuous integration and continuous delivery have
become widespread, partly as a result). Section 2.6.4.4 introduces the docker
images most relevant for our purposes.

2.4.1 VMs, the Cloud, and Containers

When Amazon realised (in the early naughties) that no one went shopping in the
middle of the night, they founded Amazon Web Services, whose first product was
EC2 (the ‘elastic compute cloud’). Those of us working on ‘big data’ analytics and
trying to juggle inadequate hardware budgets with mushrooming data sizes19 sud-
denly realised that instead of buying servers, we could buy time. For us this meant
that we could use only what we needed; for corporate users it meant that costs
could move from CapEx (capital expenditure budgets) to OpEx (operational expen-
diture), making a lot of accountants very happy. The whole space mushroomed,
and cloud computing became a thing.

How did cloud platforms partition machines for different uses? The technology
was based on virtualisation, the movement of compute loads onto Virtual Machines
(VMs), which was a big trend for the next decade or so. The ability to spread loads
meant much more efficient use of servers.

19I remember when we first got access to the Twitter firehose feed, buying a disk drive to store a data
set, and finding that by the time we’d downloaded the data it was double the size of what we’d
specified. When you consider that the data was essentially 140 character textual material that
compresses very readily, it really came home to me how many people are out there!

Hamish Cunningham 43

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

This was a big step forward, but we still had multiple copies of the operating sys-
tem (OS) running for each VM. The next step was to solve this using what came
to be called containers, starting with LXC (Linux Containers) and becoming most
popular as Docker. Containers share a base image of the OS and layer thin (union)
filesystems on top. A specification (e.g. Dockerfile) allows recreation of diverse con-
figurations from base images, and it has become very cheap and easy to spin up
new images.

One of the unexpected benefits of these trends has been that we now have a
straightforward way to freeze a computational environment (operating system plus
arbitrary applications) and move it between machines. Hence the current discus-
sion: we can use containers to encapsulate complicated development environ-
ments like our IoT build systems and expect them to operate in a constant manner
across platforms.

We can also standardise the way we integrate, test and deploy complex projects,
which we’ll discuss briefly in the next section.

2.4.2 DevOps, Containers and CI/CD

Why do complex systems stop working? Bitrot! Well, more precisely, we create
complex combinations of library, compilers, databases, operating systems, deploy-
ment tools, web server runtimes, load balancers… all with their own versions, de-
pendencies and release cycles. If we lose track of all those versions, it can become
impossible to recreate, and if dependency evolution leads to incompatibilities, the
maintenance task can grow very large.

A second major source of software entropy is that as time goes on all types of
systems evolve (“a building isn’t something you finish but something you start”
(Brand 1994)), and while adding and changing features we often introduce bugs
and regressions.

The modern answer to how we cope with these various types of chaos in our soft-
ware development lives is often known as CI/CD:

• continuous integration (CI): whenever anything changes, build, test and deploy
(to test environments) immediately

• continuous deployment (CD): deploy new versions to production environments
as soon as possible

Along with the ubiquity of hosted version control (think GitLab or GitHub or the
like), CI/CD has become an industry standard, at least in the open source world.
Containerisation plays a vital role in this picture, allowing us to:

• freeze configuration in the container recipe (e.g. Dockerfile, docker-compose.yml,
.gitlab-ci.yml …)

44 Hamish Cunningham

https://docker.com/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• spin up an image, test, publish results, store outputs
• have an up-to-the-minute health-check available 24/7

These facilities are now built-in to the version control hosting sites and many oth-
ers. For example, the on-line and PDF versions of these notes are generated using
a LaTeX Docker image and a CI/CD script with Makefile to pull in the Pandoc text
processor. Every time I push a change to the gitlab repository, the book gets regen-
erated and re-published. Sweet.

2.4.3 Portable Development Environments

To summarise, containers allow us to specify, compose and distribute entire compu-
tational environments in a simple and efficient manner. Repository providers like
Docker hub facilitate this process and have become powerful tools for developers.
The downside is that we are adding yet another layer of complexity to an already
complex picture20, and it would be a mistake to expect to fully understand the con-
tainer ecosystem without putting in significant effort, but when we get caught in
the maze of IoT build systems it is well worth trying to see if an appropriate (and
trusted!) image exists and giving it a whirl.

2.5 A Helper Script: magic.sh

Note: if you’re not a Linux command line fan, try a different approach! One good
option in 2024 the is docker + web serial approach.

We provide a helper script in the course repo to give you an idea of how the various
build systems, IDEs and related tooling fits together. If you’re developing on Ubuntu
22.04 you can use the script directly (using the setup command to get started; see
magic.sh -h for more commands). Otherwise, you can check the script’s code for
inspiration, or follow the instructions for another platform of your choice. (If you’ve
never used the *nix command line or written shell script magic.shmay look like, well,
magic. Don’t panic! So long as you know where your towel is, you’ll be fine. Just
follow the instructions for your platform that are hosted by the IDE you wish to
use.)

Rationale: we would like our ideal build system to do these things:

• work with the ESP32/Arduino compatibility layer (or “core,” arduino-esp32) and
with ESP-IDF

• allow reconfiguration of ESP-IDF components (which implies the ability to re-
build the arduino-esp32 layer via esp32-arduino-lib-builder, perhaps using docker)

20Paul Beech summarised my account of developing Docker images for the unPhone as “I had a build
problem, so I used Docker, and now I have two problems…”

Hamish Cunningham 45

https://hub.docker.com/r/thomasweise/texlive
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/.gitlab-ci.yml
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/micasa/Makefile
https://pandoc.org/
https://pandoc.org/
https://hub.docker.com/
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/support
https://lab.cccb.org/en/arthur-c-clarke-any-sufficiently-advanced-technology-is-indistinguishable-from-magic/
https://en.wikipedia.org/wiki/Phrases_from_The_Hitchhiker%27s_Guide_to_the_Galaxy#Knowing_where_one's_towel_is
https://unphone.net/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• provide a simple CLI (command-line interface) to make automation tasks like
CI/CD (continuous integration / continuous deployment) easier

• provide a modern IDE with code completion and etc. (and support a debugger
like ESP-PROG)

• be cross-platform

To achieve these things, we have (at least) these options:

• the GNU Make build system in IDF versions 3 and below
• the CMake build system in IDF versions 4 and above
• the Arduino (Java Swing) IDE (either versions up to 1.9 or version 2+)
• the Arduino CLI (included in the IDE from version 2)
• the Arduino web IDE
• the VSCode ESP-IDF plugin from Espressif
• the PlatformIO IoT build ecosystem, with both CLI and VSCode forms
• the makeEspArduino Makefile (for GNU Make)
• support tools for rebuilding the Arduino core: esp32-arduino-lib-builder
• docker images supporting the lib-builder: lbernstone-docker
• Espressif’s own docker images for ESP-IDF, with CMake underneath and the
editor of your choice on top

None of them do all the things we would like to do, at least not reliably and while
keeping pace with the evolution of the ESP ecosystem. (For example, when I wrote
this in November 2021, the excellent docker images from Larry Bernstone that en-
capsulate the complex versionning and rebuild process of the Arduino core are avail-
able only for an alpha of the 2.0.0 release, whereas the core itself now has a release
candidate of 2.0.1… Fortunately in 2024 things have improved significantly.)

What to do?

The magic.sh script supports several builds using PlatformIOor makeEspArduino, which
are largely compatible with the (1.8.x) Arduino IDE. Other examples do more com-
plex tasks, e.g. running an IDE build (with optional lib-builder reconfiguration) in
a docker container, then exporting the firmware .bin to the host machine to allow
cross-platform burning to devices. It all gets pretty hairy, and tends to be brittle as
a result. So I recommend thatyou figure out your ideal build process in easy stages.
Start with something very simple (e.g. the Arduino IDE version 1.8.19, or the ma-
keEspArduino CLI), get the hang of building and burning firmware to the ESP, and
then add bells and whistles later on as required. In 2024 the docker + web serial
approach is also a good choice to start with.

Ok, that’s the end of Chapter 2’s general material. The rest of the chapter gives
specific tasks for Week 2.

46 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

2.6 COM3505 Week 02 Notes

2.6.1 Learning Objectives

Our objectives this week are to:

• set up the programming environments and start coding and burning new
firmware to the ESP32

• breadboard a circuit and code firmware for it
• explore useful background on the Arduino ecosystem, open source and open
hardware culture

2.6.2 Assignments, Set Up, Exercises 1 & 2 (Ex01, Ex02)

Notes:

• add a .gitignore file to your repository, set up your programming environment
as below and burn example firmware to your ESP32

• coding hints:

– you will need to use the Arduino library functions Serial.begin and pinMode
(in setup), and Serial.println and digitalWrite (in loop); the ESP32 library
function getEfuseMac will give you access to the MAC address

– the Arduino IDE has lots of example sketches built in… (see File>Examples;
try ESP32>ChipID for an example of using Serial, and Tools>Serial Monitor to
see the results)

• push your work to your gitlab repo regularly

Exercises:

• Ex01: take a copy21 of the HelloWorld code and modify it to:

– print the device MAC address (and monitor it over the serial line)
– research the issues involved with String processing on the Arduino plat-
form, and add commented code to your sketch illustrating the various
alternatives

– if you’re feeling brave, try and work out the problem with the results re-
turned by getEfuseMac – how would you fix that?

• Hardware 222: fit your ESP32 to the breadboard and add an LED and a switch
to create a sensor/actuator circuit

– instructions and diagrams are below
21The magic.sh script supports an argument copy-me-to which copies and renames a firmware tree.
E.g. cd HelloWorld; ./magic.sh copy-me-to ~/NewExample.

22Hardware 1 is the electronics lab intro sheet – see last week’s notes.

Hamish Cunningham 47

https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/exercises/HelloWorld/README.mkd

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• Ex02: using the breadboard you constructed above, blink the external LED
and read from the switch

– note: you’ll need the INPUT_PULLUP macro for the switch code

• check in and push your code in your own repository (com3505-student-2024):

– if you haven’t already, please add a .gitignore file containing build and
.pio and .vscode as appropriate (see above)

– git add [any files you created]
– git commit -vam "a helpful commit message"
– git push

As noted in chapter 1’s “how the course works”, there are example solutions in
the course materials tree. Have a go at doing your own version before looking at
these!

2.6.3 Adding a .gitignore File

First, to avoid checking in lots of emphemeral build files, add a file called .gitignore
to the top level of your repository, containing:

1 .pio
2 .vscode
3 build

To do this from the command line try something like this:

1 cd com3505-student -2024
2 cat <<EOF >.gitignore
3 .pio
4 .vscode
5 build
6 EOF
7 git add .gitignore
8 git commit -vm 'added a .gitignore file'
9 git push

From now on files or directories like .pio (PlatformIO’s build tree) will not be added
to the repo or listed in git status requests.

2.6.4 Set up your Programming Environment

As discussed above there are lots of options, and lots of potential pitfalls, so give
yourself plenty of time to do this task, and don’t be surprised if you need to come
back to it multiple times to refine your toolset.

I recommend that you start with the Docker/PlatformIO/WebSerial approach, or pos-
sibly the Arduino IDE (version 1.8.19, which is old and clunky but reliable). (When

48 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

using the former you can choose your favourite editor to go with the compile and
flash tools, e.g. VSCode or vim or …)

Once you have one of these working, if you wish you might then try PlatformIO
in VSCode. The ambitious amongst you might try Eclipse (if you’ve used it before
and liked it), or Arduino Create. The important thing this week is just to get one
environment running (and if you’re happy with it feel free to stop there!).

Follow these steps:

• follow the instructions below for setting up docker or the Arduino IDE, and try
the Blink and GetChipID examples

• familiarise yourself with course repository if you haven’t already: gitlab.com/hamishcunningham/the-
internet-of-things

• try the course gitlab’s HelloWorld, from…the-internet-of-things/exercises/HelloWorld
• experiment with other build methods and IDEs to taste

Support for these tools on the University machines is limited to Docker (from 2024),
Arduino IDE and VSCode. The latter should allow you to install PlatformIO (see
2.6.4.2).

To run on other platforms, I’ve provided a firmware template and shell script in the
course materials which may, if you’re running on Ubuntu 22.04 or other recent
Debian derivative, set things up for you without much intervention. You can also
use this via Docker, or in a VM. See section 2.6.4.3 below.

The rest of this section details how to work with various different IDE and CLI meth-
ods. You don’t need all of them, one or two is fine :)

2.6.4.1 Using the Arduino IDE (ArdIDE)

One of the simplest and most reliable ways of programming the ESP32 is using
the Arduino IDE. This IDE is a little like me: quite robust and reliable, but a little
antiquated. It is a good place to get started, but possibly not where you want to
remain for the whole course. Your choice though: if you like it, go with it.

To pick up the compiler toolchain and other specifics we also need to install an IDE
plugin known as a core – see above. The easiest way to install the IDE and the
ESP32 core is to follow the “boards manager” instructions in the core documenta-
tion. Choose a stable release version, and install core version 2.0.6, which should
give you IDF release 4.4.3.23 Version 2.0.14, which should give you IDF release
4.4.6 should also be fine.

For example:

23One caveat: using the board manager installation method also means that the configuration utility
for IDF (menuconfig) can’t be used (because the Arduino layer installs a pre-compiled version of
IDF).

Hamish Cunningham 49

https://gitlab.com/hamishcunningham/the-internet-of-things
https://gitlab.com/hamishcunningham/the-internet-of-things
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/HelloWorld
https://www.arduino.cc/en/software
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide
https://docs.espressif.com/projects/esp-idf/en/v4.4.3/esp32s3/
https://docs.espressif.com/projects/esp-idf/en/v4.4.6/esp32s3/
https://docs.espressif.com/projects/esp-idf/en/v4.4.6/esp32s3/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• install the IDE version 1.8.19 from the Arduino.cc download site (on University
machines it should already be present, or available from the software center)

• plug your ESP32 Feather board into a USB socket on your computer
• put your board into bootloader mode by holding boot and pressing (and releas-
ing) reset (see also the Adafruit docs for your board)

• launch the IDE
• open File>Preferences and add the Additional Boards Manager URLs as described
in the ESP32 Arduino core docs: paste in the stable release link

• go to Tools>Board>Boards Manager and type esp in the search box, which should
now bring up esp32 by Espressif Systems; install version 2.0.6 or 2.0.14 (a sev-
eral hundred MB download; it took about 5 minutes on a Diamond Electronics
lab machine)

• now go back to Tools and

– from >Board select Adafruit ESP32S3 Feather 2MB PSRAM
– from >Port select the USB connection (probably /dev/ttyACM0 or /dev/ttyACM1
on Ubuntu, or /dev/cu.SLAB_USBtoUART on a MAC, or e.g. COM15 on Windows)

• open an example from the File menu, e.g. File>Examples>01.Basic>Blink and up-
load (“burn”) to the ESP by clicking on the arrow towards the top left of the
IDE; if this works, there should (eventually) be a Done uploadingmessage on the
middle bar (beneath the code pane)

• press reset once more and your ESP should start blinking its red LED

Congratulations, you have successfully burnt your first ESP32 firmware!

Another useful example to try at this point is GetChipID:

• open this from the “Examples for Adafruit ESP32-S3 Feather 2MB PSRAM” sec-
tion: File>Examples>ESP32>ChipID>GetChipID

• close any other open sketch
• open the Serial Monitor window (from Tools)
• set the baud rate (bottom right) to 115200
• upload to the ESP
• hit the board’s reset button; check that the port is still the same and change
if needed (see below)

• you should now see output like “ESP32 Chip model =…” etc. in the monitor

If you got that lot to work, you have:

• got a running version of both ESP-IDF and the ESP32 Arduino core
• got a working configuration of the ArdIDE
• successfully uploaded (or “burned” or “flashed”) firmware to your ESP32
Feather

• listened on the serial line between your machine and the ESP, and displayed
the results

Probably time for a brew!

50 Hamish Cunningham

https://www.arduino.cc/en/software#legacy-ide-18x
https://www.arduino.cc/en/software
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-boards-manager

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

2.6.4.1.1 Troubleshooting Ports Didn’t work? The most common problem at this
point (and it is, sadly, a new one that recent boards have brought to the table)
is getting the right sequence of boot+reset/burn/reset, followed by flash, followed
by another reset, followed by opening a serial monitor on the correct port. The
sequence needs to go like this:

• Plug in the board; at this point a serial port should show up (e.g. /dev/ttyACM0
on Ubuntu or COM9 on Windows). Select this port in your IDE (from the Tools
menu for Arduino).

• Put the board into ROM bootloader mode, which is necessary in order to allow
flashing of new firmware. To do this hold down the boot button, press and
release reset, then release boot.

– Another way to do this is to unplug the USB connection, hold down boot
and then replug (and release boot).

• Now get your IDE to flash (or “burn,” or “upload”) your new firmware; in the
Arduino IDE use the big arrow in the top left. If this fails:

– repeat the boot/reset sequence; you may need to do this several times!

• When you see “uploading finished,” the board will likely need another reset
in order to leave bootloader mode and run the newly burned firmware. (Plat-
formIO manages to achieve this reset automagically, so do wait a few seconds
to see if your IDE manages it too.)

• At this point one of the typical “gotcha”s may happen, which is that the oper-
ating system thinks your board has disappeared and another been connected,
and so allocates a new serial port. Your IDE doesn’t know what has happenned,
and will need to be told about the “new” board in order to display what is hap-
pening on serial. Ouch! In the Arduino IDE, go back to the Tools menu and
choose the new port. (The old port is no longer valid and may have disap-
peared.) You may (or may not!) need to also close and reopen the serial
monitor.

• You might also see “Access is denied” messages. This error is triggered when
compiling a sketch that is in a directory that you don’t currently have write
permission to. This tends to happen with the built-in examples on Arduino IDE
installs on the Uni machines – the examples are considered part of the software
install, which is read only for normal users. The fix is to “save as” or otherwise
copy the sketch to your own file space, re-open and compile from there.

• Other things to try: in File>Preferences enable verbose messages for upload.
This may give a clue to e.g. port problems. Or try unplugging your board,
shutting down the IDE, restarting your machine then trying again!

• A Python 3.8 issue causes problems with networked Windows drives. If you
see “UNC paths are not supported” errors, move your working directory to a
local drive (e.g. C:).

Hamish Cunningham 51

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• Sometimes after a successful flash and reset, the serial monitor process hangs.
Hitting “return” in the console sometimes fixes it!

• See also this problem with the Arduino core for the S3 that exhibits on the
Feather, to do with the way the device presents itself to the OS (to support
CircuitPython, UF2, and JTAG over USB, for example). The (long) story is here:

– summary 1 and summary 2 of original discussions on Adafruit forums
– discussion and pull request of the likely fix
– example of how to run that in PlatformIO in the course example code (trig-
gers a big download!)

– in the Arduino IDE it may do the same to replace the stable boards man-
ager URL in preferences with the development version, and choose the
latest

– if you’ve used magic.sh setup on Ubuntu, for a quicker download try
checking out commit f69bbfe in the-internet-of-things/support/tooling/
Arduino/hardware/espressif/esp32 (Arduino) or the-internet-of-things/support
/tooling/platformio/packages/framework-arduinoespressif32 (PlatformIO)

• The version of ESPTool can sometimes cause problems in VSCode; there’s
an example of setting it to an older version in the HelloWorld platformio.ini:
platformio/tool-esptoolpy@1.40300.0 (in the platform_packages section).

• If you try everything to get VCCode to flash with no success, try coding in
VSCode (and building to check your compile) and then flashing from Arduino.

• Note that when using PlatformIO via pio run -t upload -t monitor, after a suc-
cessful flash you may need to wait until the --- Terminal on ... messages ap-
pear before hitting reset in order to ensure that the serial monitor works.

Older boards with extra UART control chips manage this process better, but to sup-
port Python (see chapter 14) and the UF2 bootloader, and to exploit the ESP32S3’s
built-in USB capabilities, the new boards have gone back to the boot/reset style.
See also the relevant discussion of Arduino IDE firmware uploading, native USB
glitches and entering bootload mode in Adafruit’s board docs.

2.6.4.2 Using VSCode and the PlatformIO Plugin

In 2024 VSCode with PlatformIO is probably the most popular fully-featured devel-
opment environment for programming IoT devices.

To install, follow the PlatformIO plugin instructions.

The sequence goes like this:

• open VSCode
• install the PlatformIO plugin and go to PlatformIO home (which should trigger
installation of the PlatformIO core, after which you need to restart VSCode)

52 Hamish Cunningham

https://forums.adafruit.com/viewtopic.php?p=959330#p959330
https://forums.adafruit.com/viewtopic.php?p=959745#p959745
https://forums.adafruit.com/viewtopic.php?p=959981#p959981
https://github.com/espressif/arduino-esp32/pull/7828
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/exercises/HelloWorld/platformio.ini#L17
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all#upload-sketch-3108001
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all#native-usb-and-manual-bootloading-3108009
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all#native-usb-and-manual-bootloading-3108009
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all#enter-manual-bootload-mode-3108011
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all
https://code.visualstudio.com/
https://platformio.org/install/ide?install=vscode

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• go back to PlatformIO home, and “Pick a folder”; a good option is HelloWorld
from the course repo, so you may wish to clone (or download and unzip) that
now

• when the HelloWorld directory is opened you should see a list of items in the
EXPLORER tab at the top left; click on platformio.ini, and the IDE will install the
toolchain (which takes a few minutes)

• do a build and burn:

– click the arrow in the bottom bar (tooltip: PlatformIO: Upload)
– select Show All Tasks...
– choose PlatformIO Upload and Monitor (adafruit_feather_esp32s3)

2.6.4.2.1 Troubleshooting See above for port related issues. Others:

• If you’re seeing lots of red squiggles in places you don’t expect, then you’ve
probably openned code without going through PlatformIO (which sets up all the
necessary paths to find include files and libraries and etc.). The solution is to
close everything (“Close Folder” in the File menu) then go to PlatformIO home
and “Choose folder”; select one that contains platformio.ini and you should be
good to go.

2.6.4.3 Using magic.sh and the Firmware Template

NOTES:

• these examples are designed for Ubuntu 20.04. You’ll need to use Docker or
a VM or emulation (Cygwin, WSL2, …) or etc. if you want to try them on other
platforms24

• the magic.sh script contains a lot of stuff that you almost certainly won’t need
(e.g. devops docker manipulation, Arduino IDE stdout parsing, VSCode in
docker setup, etc. etc.); only go there if you need to!

In our the-internet-of-things course materials git repository you can find directory
trees called support and exercises/HelloWorld. These contain example firmware code
(functionally similar to the Blink example supplied with the Arduino IDE) and a script
called magic.sh that (if it works) could simplify your install and CLI build work. To use
magic.sh:

1 # the best place to keep this stuff is in $HOME, so:
2 cd
3 # get a working copy of the main setup and build script:
4 wget https://gitlab.com/hamishcunningham/the-internet -of-things/-/raw/

master/support/magic.sh
5 chmod 755 ./magic.sh
6 # clone the course repo and the unphone repo if you want copies:

24Or feel free to port them! And send me a pull request!

Hamish Cunningham 53

https://iot.unphone.net/#troubleshooting-ports

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

7 ./magic.sh clone
8 # we don't need the first copy of magic.sh any more as the cloned repo

has one:
9 rm ./magic.sh
10 cd the-internet -of-things/support
11 # download the various development tools we'll be using:
12 ./magic.sh setup
13 # if you want to install the Arduino IDE:
14 ./magic.sh arduino-setup

You should now have a directory called something like /home/yourname/the-internet-
of-things/support/tooling containing the Arduino ESP32 core, the Arduino IDE (with
sketchbook and preferences directories), PlatformIO CLI, makeEspArduino and (one
or more versions of) ESP-IDF, and also directories called unphone and unPhoneLibrary
containing library code.

To do a command-line build of a conventional .ino sketch, first put your Feather into
bootloader mode by holding boot and pressing reset, then try:

1 cd the-internet -of-things/exercises/HelloWorld
2 ../../support/magic.sh pio run -t upload -t monitor

When the upload has finished you may need to press reset again to load the new
firmware. If all is well you should see something like

1 ahem, hello world
2 IDF version: 4.4.3
3 ESP_ARDUINO_VERSION_MAJOR=2; MINOR=0; PATCH=6
4 ...
5 ARDUINO_BOARD=Adafruit Feather ESP32-S3 2MB PSRAM

To take a copy of one of the examples, use the copy-me-to command from inside the
example. E.g. if you have your gitlab repo checked out in your home directory, this
would create a new tree there:

1 ../../support/magic.sh copy-me-to ~/com3505-student -2024/MyNewExample

For more details take a peak at the script or try

1 .../magic.sh -h
2 .../magic.sh -H

You can also do this via Docker: see next section.

2.6.4.4 Docker + PlatformIO + WebSerial to build cross-platform

This is a reliable and repeatable method that works cross-platform, and gets around
Windows and MacOS problems with serial port access. This section will useWindows
as an example; see next for more details on how to do this on Linux or MacOS.

This method has a three step process:

54 Hamish Cunningham

https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/exercises/HelloWorld/magic.sh

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• build: cd your project, make your next round of edits and then .\build.ps1
• prepare device for flashing: plug in your device (e.g. feather) and put it
into boot mode

• flash device: from chrome, flash the file firmware_merged.bin from the previous
step then reset

Initial configuration can be a bit of a pain, but afterwards the process should be
very reliable.

2.6.4.4.1 Prerequisites:

• a project configured to build with PlatformIO (i.e. containing a platformio.ini
file)

• a merge_bin.py script in the top level of that project

Note: this method doesn’t play well with network drives on Windows; you
can’t do this on the U: drive in Sheffield, for example. So put your files in a
local directory, e.g. cd $env:localappdata (which will take you somewhere like
C:\Users\YourName\AppData\Local) first and work from there, e.g. git clone https://
gitlab.com/hamishcunningham/the-internet-of-things and then cd the-internet-of-things
/exercises/HelloWorld.

2.6.4.4.2 Installation and configuration:

• open a powershell terminal
• check versions (you may need to reopen powershell first):

– PS C:\> docker -v; I’m running Docker version 24.0.7
– if there’s no docker present, install docker engine

• try docker run hello-world

– if you get an error like “command not found,” or docker: error during
connect ... docker daemon is not running install docker desktop if it isn’t al-
ready on your machine (I’m running 4.26.1), with WSL support

• start docker desktop and follow the configuration steps called “Finish setting
up Docker Desktop”:

• first accept recommended settings:

Hamish Cunningham 55

images/docker-desktop-finish.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

25

• allow Docker Desktop Privileged Helper to make changes to your device (you’ll
need to enter your password)

• you should get a welcome screen; continue without signing in:

25Docker desktop configuration.

56 Hamish Cunningham

images/docker-desktop-finish.png
images/docker-desktop-finish.png
images/docker-desktop-signin.png
images/docker-desktop-signin.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

26

• skip the “role” etc. screen
• you may need to wait a few mins during steps, as it may need to do a WSL
update

• if it crashes, restart :)
• when the docker desktop main window is visible we should be in business; it
looks like this:

26Docker desktop sign in.

Hamish Cunningham 57

images/docker-desktop-signin.png
images/docker-desktop-signin.png
images/docker-desktop-ui.png
images/docker-desktop-ui.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

27

• we should now be able to do docker run hello-world from powershell:

1 PS C:\> docker run hello-world
2 Unable to find image 'hello-world:latest' locally
3 latest: Pulling from library/hello-world
4 c1ec31eb5944: Pull complete
5 Digest: sha256:4

bd78111b6914a99dbc560e6a20eab57ff6655aea4a80c50b0c5491968cbc2e6
6 Status: Downloaded newer image for hello-world:latest
7
8 Hello from Docker!
9 ...

All good, we’re ready to build :)

2.6.4.4.3 Build your firmware and flash it to your device Now navigate to the directory
containing your project. (If you don’t have one, try our HelloWorld example to get
started. GitLab will download just that directory for you if you click on “code” and
select “zip” at the bottom.)

1 PS C:\> cd .\the-internet -of-things-master-exercises -HelloWorld\
exercises\HelloWorld\

27Docker desktop UI.

58 Hamish Cunningham

images/docker-desktop-ui.png
images/docker-desktop-ui.png
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/HelloWorld

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

2 PS C:\the-internet -of-things-master-exercises -HelloWorld\exercises\
HelloWorld > ls

3 Directory: C:\the-internet -of-things-master-exercises -HelloWorld\
exercises\HelloWorld

4 Mode LastWriteTime Length Name
5 ---- ------------- ------ ----
6 d----- 22/01/2024 12:11 sketch
7 -a---- 22/01/2024 12:11 59 .gitignore
8 -a---- 22/01/2024 12:11 1355 merge_bin.py
9 -a---- 22/01/2024 12:11 1131 platformio.ini
10 -a---- 22/01/2024 12:11 2755 README.mkd

Finally, let’s do a compile: .\build.ps1. With luck and a prevailing wind this should
create a file called something like .pio/build/adafruit_feather_esp32s3/firmware_merged
.bin which we can now flash to the device using the WebSerial ESP flashing tool
from Adafruit.

(If you then want tomonitor the serial line try tools like the Arduino IDE’s Tools>Serial
Monitor or command-line tool like tio, or PlatformIO core’s -t monitor option.)

2.6.4.5 Using Docker with magic.sh, pio or idf.py

Finally, here are some more details of using the magic.sh script with docker on
Linux.

Espressif provide a Docker image for ESP-IDF, and I’ve also prepared an image that
bundles the Arduino ESP32 core, Platformio CLI, the course git repositories and
various bits and pieces. You should be able to install docker on your own machines
and get working straight away, but there are two caveats:

• These images all use several gigabytes of disk, so be prepared for a long down-
load!

• By default the serial port (which you need in order to flash firmware to the
ESP32 device) is not passed through to the container. When your host ma-
chine is running Linux, you can do this via a command like docker run --device
=/dev/ttyUSB0:/dev/ttyUSB0, but on Windows the equivalent way to access the
COM ports is difficult and unreliable. This means that after compiling with the
container you will need to run a separate burn command on the host machine.

To run a PlatformIO CLI build, for example, try:

1 # cd to a directory on your docker host containing .platfomio:
2 cd ~/the-internet -of-things/exercises/HelloWorld
3 # run the iot:pio image:
4 docker run -ti --device=/dev/ttyACM0 -v $PWD:/home/ubuntu/project \
5 hamishcunningham/iot:magic
6 # cd into the mapped host project directory:
7 cd project
8 # compile the sketch:
9 pio run

Hamish Cunningham 59

https://adafruit.github.io/Adafruit_WebSerial_ESPTool/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

If you’re on Linux you can flash and monitor firmware from the image using a flag
like --device /dev/ttyUSB0. From MacOS or Windows quit the image after building and
search for firmware.bin in ./pio after building. Then use some local utility (e.g. idf.py)
or a web serial tool to flash.

As usual the magic.sh script has some convenience commands to get you started:

• magic.sh -D: when run from a directory containing sketch/sketch.ino this com-
mand will run the course docker image

• from within the image you can use the PlatformIO CLI, for example: pio run -t
upload -t monitor

• equivalently: magic.sh -D pio run -t upload -t monitor

There are lots of gotchas when developing with Docker; e.g. by default any changes
you make to a running container (like triggering PlatformIO to install an XTensa
toolchain) will be lost when you quit that container. It is a very powerful tool, and
becoming an industry standard for operations, but be aware that there will be a
learning curve :)

Note: if you see an error like

1 ~/the-internet -of-things/exercises/9LEDs $../../support/magic.sh -D
2 docker: Error response from daemon: error gathering device information

while adding custom device "/dev/ttyUSB0": no such file or
directory.

3 ERRO[0000] error waiting for container: context canceled

it means you haven’t got access to the serial port that your ESP32 is connected
to. (Perhaps the port isn’t available, or on Linux perhaps you’re not in the dialout
group?)

2.6.4.6 Using PlatformIO CLI

PlatformIO has lots of nice features for IoT development, including managing the
toolchain installation process and library installation. Instead of fiddling with your
IDE or persuading our Docker image to run, if you have the correct platformio.ini
configuration file in your project the system will manage everything for you.

For example, to build and burn the HelloWorld example try this:

• follow the PlatformIO CLI installation instructions for your platform
• change directory to a directory containing code and platformio.ini, e.g.: cd the

-internet-of-things/exercises/HelloWorld
• build/upload/monitor: pio run -t upload -t monitor

If you hit port-related trouble, see above.

Note that you can use the CLI in a terminal from within VSCode by navigating to
the PlatformIO IDE home within code and then selecting PlatformIO Core CLI. If you

60 Hamish Cunningham

platformio.org
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/exercises/HelloWorld
https://docs.platformio.org/en/latest/core/installation.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

like the command line this gives you the best of both worlds, a powerful editor with
autocomplete etc. plus a quick way to run compiles and scripts and etc. without
having to resort to the mouse!

2.6.5 Hardware 2: Sensor/Actuator Board

We are using a breadboard (also known as proto-board) to assemble our circuits
in the labs. Breadboards allow components and wires to be pushed into holes and
connected without soldering. (In Hardware 1 you use one to experiment with
voltages, resistors, and measuring a circuit’s performance with a multimeter. These
are important skills for IoT device prototyping, and will be useful for your project
work later in the term.)

To recap, a breadboard has some connections between holes already made – shown
in this diagram:

28

2.6.5.1 Using a Breadboard to Make a Sensor/Actuator Circuit

NOTES:

• Changes from ESP32 Feather to ESP32S3: pin 32 becomes 6, 14 becomes 5.
(The physical positions are the same on the board, just the numbering has
changed.) The text below is correct, but the diagrams show the old numbers:
beware!

28From Kornakproto.

Hamish Cunningham 61

http://kornakprotoblog.blogspot.co.uk/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• For more detail about finding pins see the discussion in sec. 3.3.6.1.

Take your ESP32 feather device and carefully lay it in place on the breadboard over
the holes indicated:

Now push gently on the edges of the feather to insert the pins into the holes –
you are aiming to keep the device parallel to the breadboard as it goes into the
holes, rather than push one side down and leave the other up. Keep moving around
pushing in different places if it seems stuck – often new breadboards are a bit stiff
at first. If the pins aren’t going in easily then check that they are all lined up above
the holes correctly – if not you can bend them gently with a pair of fine pliers. You
will need to use some force to push the device down onto the breadboard. To get
an idea of how much force might be needed, take a jumper wire and try inserting
that into a hole, then multiply that by 28. Try not to bend the header pins – if you
do then use the pliers to return them to their correct orientation.

Once the feather device is inserted, add a LED, 120Ω (or thereabouts) resistor and
push-button switch from your kit as shown:

62 Hamish Cunningham

images/feather-in-breadboard.png
images/blinky-in-breadboard.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Pay attention to the orientation of the LED – as it is a (light emitting) diode it will
only work one way round. The longer lead of the LED is the anode and it connects
to the ESP32 output pin – the shorter lead is the cathode and it connects to the
negative or ground connection. Add jumper leads to complete the circuit as shown
– colour codes help to make the circuit more readable:

Hamish Cunningham 63

images/blinky-in-breadboard.png
images/blinky-in-breadboard.png
images/blinky-in-breadboard-with-connections.png
images/blinky-in-breadboard-with-connections.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The circuit pictured above can be represented as a schematic – this is a more ab-
stract representation of the components and connections:

The trick here is that the LED is connected to pin 6 and the switch to pin 5, so we
might usefully define these in our C code as int pushButton = 5, externalLED = 6;.

The code for this sketch should make use of the internal pull-ups inside the ESP32.
Simply pass the “input pullup” macro to the pinMode command: pinMode(pushButton
, INPUT_PULLUP) These are optional resistors that connect to +v and the input pin.
These make the inputs high, unless they are connected to ground. See this dia-
gram:

64 Hamish Cunningham

images/blinky-in-breadboard-with-connections.png
images/blinky-schematic.png
images/pullup.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Below are some pictures of an example board. Note that this one is using the ESP32
with “stacking headers” (additional sockets on top of the board) so we can use both
the breadboard sockets or the stacking sockets to connect to.

Hamish Cunningham 65

images/pullup.png
images/pullup.png
images/hw2-111708.jpg
images/hw2-111715.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

You’re now ready to work with the LED and switch in firmware to answer Exercise 2
as above.

When you’ve finished your version, have a look at exercises/Thing/sketch/Ex02.cpp.
(To run exercise 2, set LABNUM to 2 in sketch.ino.) How similar is it to yours? Does it
work better, or not as well? If you try running it on your hardware, you’ll likely find
that the switch isn’t very responsive and often needs pressing several times before
it works. Why might that be?

All will be revealed… :)

2.7 Further Reading

• (Greenfield 2017) “Rise of the Machines: Who Is the ‘Internet of Things’ Good
For?” The Guardian, June 6.

• Essays and lectures on free software:

– (Stallman 2002) Free Software, Free Society: Selected Essays of Richard
M. Stallman

– GNU.org essays and articles on philopsophy

• (Perzanowski and Schultz 2016) The End of Ownership: Personal Property in
the Digital Economy. MIT Press 2016

• the IoT in general (McEwen and Cassimally 2013; Bassi et al. 2013; Nold and
Kranenburg 2011; Kurniawan 2016; Slama et al. 2015)

• security (Dhanjani 2015; MacDermott, Baker, and Shi 2018; Sivaraman et al.
2015)

66 Hamish Cunningham

images/hw2-111715.jpg
images/hw2-111715.jpg
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/Thing/sketch/Ex02.cpp
https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
https://www.gnu.org/philosophy/fsfs/rms-essays.pdf
https://www.gnu.org/philosophy/essays-and-articles.en.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• the Things Network and LoRaWAN (The Things Network 2018; Adelantado et
al. 2017; Blenn and Kuipers 2017)

• Arduino (Banzi and Shiloh 2014a; Margolis 2011; Monk 2013; Doukas 2012;
Pfister 2011)

• Raspberry Pi (Upton and Halfacree 2014)
• safety issues in relation to LiPo batteries (NERC 2016)
• Open Rights Group
• (Doctorow 2012) Pirate Cinema. 2012 http://craphound.com/pc/download/

Hamish Cunningham 67

https://www.openrightsgroup.org/

3 History; Blinking Things; WiFi

Where have we got to? By now you should have:

• started to get an idea about what the IoT is and where it comes from
• set up an IDE and/or CLI build system containing the ESP-IDF SDK and the
Arduino Core for ESP32

• used the build system to burn firmware to the ESP32
• monitored the debug output of the firmware on a serial connection
• played around with prototyping microcontroller-based sensor/actuator circuits
on a breadboard

In this chapter we do two things:

• put more flesh on the bones of our definition of the IoT by filling in more history
and context (sections 3.1 and 3.2)

• start our journey from the IoT device into the outside world by coding exercises
that use the ESP32’s WiFi stack (sec. 3.3)

There’s lots to do: crack on!

3.1 The Multiple Personalities of the Arduino Project

When we teach computing to beginners, we teach how to build something from the
ground up. A new programming language: hello world. A machine learning method:
the pseudo code for its algorithmic expression. This is necessary and valuable, but
it hides a crucial fact about software development in the 2020s: we almost never
build anything significant without starting from the work of tens of thousands of
other people. These people form communities, and communities adopt and evolve
tooling and workflows to create ecosystems. Choosing which ecosystems from the
work of our predecessors we try to hitch a ride on is often one of the most influential
decisions in any development project.

I think it fairly safe to say that few people would have predicted, around the turn of
the millenium, that one of the most significant advances in embedded electronics
and physical computing would be driven by “the development of contemporary
art and design as it relates to the contexts of electronic media” (Barragán 2004).
Starting in the early naughties, the Arduino project (Monk 2013; Banzi and Shiloh
2014b; Arduino 2017) had by the mid tennies come to provide the standard toolkit

69

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

for experimentation in low power circuits. Today the ecosystem that resulted is first
port of call for code to drive the sensors and actuators that give the IoT its interface
to the physical world. And as we saw in the previous chapter, the Arduino IDE also
provides us with one of the easiest ways to get started programming the ESP32.

We’ll start this chapter by looking in a little more detail at the various contribu-
tions that the project has made, and have a bit of a sniff around its development
environment and the type of (C++) code it supports.

Figure 3.1: The Arduino Project

Arduino can refer to any or all of:

• a hardware platform (originally based on AVR microcontrollers)
• an IDE (in both Java Swing and browser-based forms) from arduino.cc
• a company making (primarily) microcontroller-based development boards
(PCBs)

Arduino C++ refers to preprocessing, macros and libraries that are available via
the IDE. (C++ is a medium-level language layered on the C (low level) systems
programming language.) Over the last decade or so there has been a quite massive
community of open source developers contributing to an ecosystem of code and
documentation and forum posts and github repos and etc. which has made Arduino
C++ a very productive environment for IoT development.

Remember that the ESP32 is not an Arduino (or even an AVR-based device), but
there is a compatibility layer that interfaces it to the Arduino IDE. This makes lots
of code for sensors and actuators and etc. magically available for the ESP.

70 Hamish Cunningham

https://arduino.cc

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 3.2: An Arduino board

Having started out as a service project for arts and design students in Ivrea, Italy,
in the early 2000s (who were using microcontrollers to create interactive exhibits)
it brought cheaper hardware than the alternatives (based on Atmel’s AVR chips),
and added an IDE derived from work on Processing and Wiring (Barragán 2004;
Reas and Fry 2007). Some millions (or 10s or 100s of millions) of official and un-
official boards are now in existence, and it remains the most popular platform for
embedded electronics experimentation.

The Arduino IDE is a Java Swing desktop app that preprocesses your code (or
“sketches,” suffix .ino). Arduino’s programming language is C++ with lots of
added libraries and a bit of code rewriting. It runs the GNU C++ toolchain (gcc) as
a cross-compiler to convert the Arduino C++ dialect into executable binaries. The
IDE includes a compilation handler that converts sketch firmware .ino files into a
conventional .cpp file (poke around in /tmp or equivalent to see what the results
look like).

Binaries are then uploaded (“burned,” or “flashed”) to the board using various other
tools (in our case this is usually a Python tool from Espressif). The IDE then allows
monitoring of serial comms from the board, and provides access to libraries and
example code. If you ask it nicely it will plot graphs for you, e.g. of the output of a
microphone:

Hamish Cunningham 71

images/arduino-ide-plotter.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

As we noted in chapter 2 the IDE is pretty basic, and you may well want to move on
to more sophisticated tools later on. It is well worth getting to know it to start with,
however, as it is typically the fastest way to get started with new hardware, and the
fastest way to find a working example from which to develop new functionality.

3.2 A Crossover Point

In sec. 2.1 we saw two very different ways to define the IoT: as a nascent world robot,
or as the simple consequence of increases in computational power and network
connectivity in microcontroller hardware. This section gives a bit more context to
the origins of the field on the one hand, and the hardware space of IoT devices on
the other.

When we look back at the antecedents of the IoT, it becomes clear that the field
represents a crossover point betweenmany earlier (and ongoing) areas of computer
science and software engineering. Related and predecessor fields include:

• embedded systems: computation built into devices with specific purposes
(i.e. not general purpose computers)

• ambient computing or ubiquitous computing: the trend for computation
to move into more and more devices (Schneier: “We no longer have things
with computers embedded in them. We have computers with things attached
to them.”)

• physical computing (or cyber-physical systems): computation dependent
on sensor input and/or producing actuator output

• distributed computing: jobs performed by multiple machines operating in
concert

• utility computing: the as-a-service (“XAAS”) model: software as a service,
data as a…

72 Hamish Cunningham

images/arduino-ide-plotter.png
images/arduino-ide-plotter.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• the cloud: utility distributed computing
• new buzz words: serverless (um, servers+software); fog (shift work back to
the edges)

If you understand roughly what each of these terms means then you have a good
basis for understanding what the IoT means (and of being able to distinguish the
marketing speak from the actuality of possible technology options).

3.2.1 The Early History of the IoT1

The term Internet of Things was coined by Kevin Ashton in 1999 for a presentation at
Procter and Gamble. Evolving from his promotion of RFID tags to manage corporate
supply chains, Ashton’s vision of the Internet of Things is refreshingly simple: “If
we had computers that knew everything there was to know about things — using
data they gathered without any help from us — we would be able to track and count
everything, and greatly reduce waste, loss and cost. We would know when things
needed replacing, repairing or recalling, and whether they were fresh or past their
best.” (Ashton 2011)

Of course, devices had been ‘on the internet’ for several years before this, from at
least 1982 in the case of a drink vending machine at Carnegie Mellon University
in Pittsburg (Machine, n.d.). Using a serial port converter, the status lights of the
front panel of the machine were connected to the Computer Science departmental
computer, a DEC PDP-10 (for which today’s equivalent cost would be around $2
million!). The Unix finger utility was modified to allow it to report the level of coke
bottles and whether they were properly chilled. Internet users anywhere could type
“finger coke@cmua” and read the status of the machine. (It is notable that the world’s
first IoT device was enabled by openly available Unix source code.)

A camera pointed at a coffee-pot in Cambridge’s computer science department was
video-streamed on the internet from 1991, and when control from the web to the
camera was established in 1993 the first webcam was born (Fraser 1995). Pre-
saging very contemporary anxieties, a toaster had been connected to the internet
in 1990 at the INTEROP exhibition (Romkey 2017), and nearly caused a strike as
preparing food was an activity allocated to unionised labour. However it wasn’t un-
til 2001 that a toaster became an IoT device in a modern sense, able to dynamically
query a webservice for the current weather forecast, and then burn the appropriate
pictogram onto a piece of toast (Ward 2001).

So we can see that from the earliest days of IoT (when it was often called perva-
sive or ubiquitous computing) our current concerns around open source, security
(Denning and Denning 1977) and human obsolescence were already recognised.

1This section contributed by Gareth Coleman.

Hamish Cunningham 73

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

3.2.2 The Current State of IoT Hardware2

“It was the best of times, it was the worst of times, it was the age of wisdom,
it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity…” (Dickens 1877)

We do indeed live in an epoch of belief and incredulity, with feverish hype of IoT
widespread across the electronics and computing industries. Want a £400 wifi con-
nected juicer that locks you into proprietary ingredient pouches anyone? Meanwhile
‘policy bloggers’ burble excitedly about techno-utopias such as smart cities that
eliminate traffic — “Imagine a city with no traffic at all” (O’Muircheartaigh 2013).
Security researchers are desperately trying to warn us of the dangers of letting
our personal data leak out from our devices (Sarthak Grover and Feamster 2016).
After FitBit users’ personal exercise data was exposed publicly (Loftus 2011) the
company solemnly announced “We have also updated our default settings for new
users for activity sharing to ‘private.’ ”

Current hardware is very diverse, with major companies such as Intel, Texas Instru-
ments, Broadcom etc. competing to have their chips chosen by manufacturers.
However the arrival of Espressif’s ESP8266 (and now the ESP32 (ESP32 Community
2022; Kolban 2017) has shaken up the rest of industry by charging $2 per chip in-
stead of $20. This has attracted a lot of attention and stimulated the creation of
community-driven knowledge, documentation, libraries and tools; so much so that
it is significantly quicker and easier to develop for this platform than most others.

IoT hardware can be classified according to its connectivity technology; currently
the useful ones are ethernet, wifi, bluetooth, zigbee, z-wave and cellular. Whilst
wired connections are still relevant for some applications, it seems that most recent
developments have concentrated on wireless devices. If we are to buy hundreds
of IoT devices each in the next few years, we certainly won’t be plugging them all
into ethernet cables. Cellular technology remains stubbornly expensive both to buy
and to run; fine for the now life-critical mobile phone, but not for those hundreds of
devices.

Of the remaining mainstream wireless technologies, bluetooth’s USPs are it’s ultra
low-power short-range attributes and that every phone has it. For devices with
small batteries such as fitness trackers, this allows them to last a few days between
charges. Wifi has major issues with power use and connection negotiation speed
but it has emerged as a major IoT connectivity choice because of it’s ubiquity. Then
there are the Z’s – Z-wave is proprietary but popular with blue chips like Honeywell
and GE, Zigbee is an open standard also popular with big corporations – the Phillips
Hue light bulbs use it as does the Nest thermostat.

Several ‘hubs’ have been launched by manufacturers such as Google, Amazon and
Samsung that aim to bring all these devices together under one control, rather
2This section contributed by Gareth Coleman.

74 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

than having to manage dozens apps of physical remotes. For example, Samsung’s
SmartThings hub has 4 wireless radios covering z-wave, zigbee, bluetooth and wifi
plus an ethernet port.

3.3 COM3505 Week 03 Notes

3.3.1 Learning Objectives

Internet? What internet?! Up to now we’ve been programming the ESP as a stan-
dalone device. In the next period we’ll create and connect to networks, and figure
out how to configure connections for devices without UIs.

Our objectives this week are to:

• understand more about the ESP32 and the Arduino IDE
• deepen our understanding of the hardware space around the IoT (SoCs and
MCUs, devices vs. gateways, …)

• learn about the firmware/software languages used for the IoT

Practical work will include:

• a third outing for the breadboard, working towards a more permanent proto-
type on matrixboard (optional)

• some useful programming idioms:

– time slicing in the main loop
– adding debug code to sketches

• starting work with the ESP’s WiFi stack

(There are a lot of exercises this week; you’ll benefit from completing all of them,
but if you don’t have time don’t worry, just make sure to study the model solutions
in exercises/Thing.)

3.3.2 Assignments

Exercises:

Exercises three through five continue the themes of weeks one and two:

• Ex03:

– add two more LEDs to your Ex02 board
– run the three as traffic lights, triggered by the switch

• Hardware 3: construct a nine LED breadboard; write firmware to flash the
lights, or use use the 9LEDs firmware from the course repo to flash the lights
in sequence; try reversing the sequence, etc.

Hamish Cunningham 75

https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/9LEDs

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• Ex04: debugging infrastructure: experiment with macros to allow adding flex-
ible debug code

• Ex05: arrange for tasks to be performed in different loop iterations (e.g. every
1000 iterations do X; every 50k iterations do Y; …)

Exercise six brings us into the domain of the connected microcontroller at last:

• Ex06: becoming a wifi access point and web server

– The ESP can act as a wifi access point, and is powerful enough to run a
simple web server. Using WiFi.h and WebServer.h fire up an access point and
serve one or more pages over the web.

– WebServer webServer(80); will create a web server on port 80
– webServer.on("/", handleRoot); will register the procedure handleRoot to be
called when a web request for / is received

– webServer.send(200, "text/html", "hello!"); will serve “hello” to web clients
– WiFi.mode(WIFI_AP_STA)) and WiFi.softAP("ssid", "password") will create an ac-
cess point

If you get the access point to work and then join it (e.g. from a phone or laptop),
when you load http://192.168.4.1 in a browser, you should see something like this:

Now you’ve made a thing which is (almost) on the internet :) Do a little jig, dance
around the room, make a cup of tea.

3.3.3 Notes on the Model Code from Week 2

(You’ll find model versions of the exercises in exercises/Thing.)

76 Hamish Cunningham

images/webserver.png
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/exercises/Thing

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

3.3.3.1 Recap: Connecting to the ESP32

The ESP32 board we are using has a USB C socket to provide power and also allow
communications between the microcontroller and your computer. Start by connect-
ing the two together using the supplied cable. Start the Arduino IDE. Ensure that
the Tools>Board selected is the “Adafruit ESP32S3 Feather 2MB PSRAM.” Check in the
Tools>Port menu to check that the serial connection has been established.

3.3.3.2 Various Arduino Functions

Note: in the Arduino IDE certain words such as OUTPUT, HIGH, TRUE etc. are pre-defined
and shown in blue. Similarly functions such as pinMode or Serial.begin are coloured
in orange – this can help you catch syntax errors. (Or if you can get VSCode /
PlatformIO working, you’ll get full highlighting and code completion.)

1 Serial.begin(115200); // initialise the serial line

Serial communication (sending or receiving text characters one by one) has to be
initiated with a call to the begin function before it can be used. The serial com-
munications between the ESP32 and computer can operate at various speeds (or
“baud rates”) – we use 115200 baud. If you aren’t getting any response, or gibber-
ish characters on the serial port monitor, then check you’ve got the correct speed
set.

1 pinMode(LED_BUILTIN , OUTPUT); // set up GPIO pin for built-in LED

pinMode is an Arduino procedure that tells the microcontroller to set up a single pin
(first parameter) using a certain mode (second parameter). The two basic modes
are INPUT and OUTPUT; INPUT_PULLUP connects an internal resistor between the pin and
3.3V (good for listening for pull down events; we’ll hear more about these later in
the course).

1 delay(1000); // ...and pause

The delay function in Arduino takes milliseconds as it’s parameter – so a delay(1000)
; command pauses for 1 second. Note: this is a blocking method! Nothing else
can happen on the core that is being paused for the duration of the call! (Later on
we’ll see methods to wait using interrupts and timers that don’t involve blocking
execution.)

1 uint64_t mac = ESP.getEfuseMac(); // ...to string (high 2, low 4):

The ESP32 Arduino layer includes some helpful functions like this one to allow us
to get (read) the status of the electronic fuses. After the silicon for the ESP32 is
manufactured using a common mask, each one is programmed to give it a unique
identity – including things like MAC addresses. These are one-time electronic ‘fuses’
that burn the MAC address into the chip so that it cannot be reprogrammed.

Hamish Cunningham 77

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

3.3.3.3 Reading from Switches

1 pinMode(5, INPUT_PULLUP); // pin 5: digital input, built-in pullup
resistor

This pinMode call enables built-in pullup resistors connected between the pin and
the positive supply voltage (3.3V). These prevent the input ‘floating’ when it isn’t
connected to anything and instead make the input go high.

1 if(digitalRead(5) == LOW) { // switch pressed

The digitalRead function returns the binary state of the input pin given as a param-
eter. Because we are using a pullup resistor and connecting the switch to 0V – the
logic that digitalRead returns is reversed. Therefore, when the switch is pressed, the
function returns LOW.

3.3.4 Exercise 03 Notes

3.3.5 Extension to Blinky (exercise 02)

This exercise is to add two more LEDs to your Ex02 board, and then run the three
as traffic lights, triggered by the switch.

Note: remember from Chapter 2 that there are differences between the ESP32 and
ESP32S3 Feather, for example pin 32 becomes 6; 15 becomes 9 and 12 stays the
same. (The physical positions are often the same on the board, just the numbering
has changed.) The text below is correct, but the diagrams show the old numbers:
beware!

See also section 3.3.6.1 on pinouts below.

Assemble the components shown in this schematic on your breadboard:

78 Hamish Cunningham

images/blinky-traffic-lights-schematic.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

You should then have a breadboard that looks like this:

Here’s a picture of the ESP32 version:

Hamish Cunningham 79

images/blinky-traffic-lights-schematic.png
images/blinky-traffic-lights-schematic.png
images/blinky-traffic-lights-breadboard.png
images/ex03-traffic-lights.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

And here’s a pic of the S3 equivalent:

3.3.6 A Final Breadboard Prototype: 9 LEDs

Prototyping IoT devices has become much easier and cheaper in recent years. This
makes development cycles much faster: from idea to prototype to product is now
a cycle measured in weeks and months instead of years. We’ll finish our quick tour
of prototyping skills (that began in Hardware 1 with soldering, breadboarding and
using the multimeter and signal generator etc. and then went on in Hardware 2 to

80 Hamish Cunningham

images/ex03-traffic-lights.jpg
images/ex03-traffic-lights.jpg
images/ex03-traffic-lights-s3.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

wire up sensing from a switch and actuating an LED) by building a more (physically)
complicated circuit. This week for Hardware 3 we’ll build it on a breadboard, then
when you’re in the lab you have the option to solder it onto matrixboard (which is a
typical cycle in early prototyping; the next step would be to design a PCB and start
manufacturing test boards).

In the second half of term you’ll have the opportunity to build projects that involve
more complex hardware, e.g. to add GPS, or MP3 playing, or motor drivers, or ul-
trasonics, or etc. These may require soldering, and when they don’t work first time
the multimeter and oscilloscope are our first ports of call to discover why.

(Hate soldering? No lab access? Don’t worry, there are also projects that only use
the ESP32 itself.) The circuit is electrically very simple, being Week02’s Blinky with
lots more LEDs, each protected by its own resistor:

The cathode (short leg) of each LED is connected in series with a 180Ω resistor that
connects in turn to ground. The anode is connected to one of the GPIO (general
purpose input-output) pins of the ESP32.

3.3.6.1 Pinouts

Because we’re using lots of pins, it becomes a bit tricky to fit all the connections
in, and we need to check the various references to see where is good to connect.
We also need to be aware that the ESP32S3 has some differences from the ESP32
(which some of the images refer to).

Hamish Cunningham 81

images/nine-leds-bb-20.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

With the change in SoC from ESP32 to ESP32-S3, some of the pins on the Feather
have changed their designations. If you are using I2C or SPI peripherals, then these
will likely work without modification; as both boards define common designations
such as SDA, MOSI etc. If you refer to the pins using A0-A5 then these are also
common to both boards. Similarly pins 12 and 13 haven’t changed between boards,
but the other GPIO pins have changed numbers.

(Also note that whereas the previous board support defined BUILTIN_LED for the red
board LED pin, this has now been replaced with LED_BUILTIN.)

Refer to the table below and these pinout diagrams:

• original ESP32 Feather pinout
• S3 Feather pinout

Here are the original (ESP32) pinouts:

And here’s the new (S3) version:

82 Hamish Cunningham

https://cdn-learn.adafruit.com/assets/assets/000/111/179/original/wireless_Adafruit_HUZZAH32_ESP32_Feather_Pinout.png?1651089809
https://cdn-learn.adafruit.com/assets/assets/000/110/811/original/adafruit_products_Adafruit_Feather_ESP32-S3_Pinout.png?1649958374
images/huzzah-32-pinout-zerynth.png
images/feather-s3-pinouts.png
images/feather-s3-pinouts.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

A summary of the changes:

ESP32 ESP32-S3 also called

4 8 A5

5 36 SCK

12 12

13 13

14 5

15 9

16 38 RX

17 39 TX

18 35 MOSI

19 37 MISO

21

22 4 SCL

23 3 SDA

25 17 A1

26 18 A0

27 11

32 6

33 10

34 16 A2

36 14 A4

39 15 A3

0 BOOT BUTTON

33 NEOPIXEL

21 NEOPIXEL_POWER

Hamish Cunningham 83

images/feather-s3-pinouts.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

An additional complexity is that (in commonwith othermodules) the ESP has several
names for many of its pins. Just when things were in danger of becoming sensible.
Hey ho.

There’s a good description of S3 pinout detail here, and a good general discussion
on which (original) ESP32 pins to use here.

In this case we’ll use these pins:

1 // LEDs
2 uint8_t ledPins[] = {
3 18, // A0, was 26
4 17, // A1, was 25
5 12, // was 21
6 8, // A5, was 4
7 11, // was 27
8 10, // was 33
9 9, // was 15
10 6, // was 32
11 5, // was 14
12 };

The course repo has example code called 9LEDs firmware.

3.4 Further Reading

• (O’Reilly and Doctorow 2015) Opportunities and Challenges in the IoT, a con-
versation with Cory Doctorow and Tim O’Reilly. 2015

• (Kolban 2017) Check out Kolban’s book on ESP32 (Neil Kolban) at
leanpub.com/kolban-ESP32 – it is getting a little out of date, but is free and
with loads of good stuff. (His snippets library on github is worth a look too!)

• (ESP32 Community 2022) Have a general look around at the ESP32 Forum:
esp32.com.

84 Hamish Cunningham

https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all#pinouts
https://randomnerdtutorials.com/esp32-pinout-reference-gpios
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/9LEDs
https://leanpub.com/kolban-ESP32
https://esp32.com/

4 Country of the Blind: Networking Devices
Without UIs

This chapter covers two key tasks that the vast majority of all IoT devices must im-
plement: provisioning and update. Provisioning is about how devices are supplied
with network credentials, and update is about how devices are brought up-to-date
with new versions of their firmware. As usual we’ll look at implementing these
ourselves, then also look at Espressif’s Rainmaker version and at the new Matter
standard (which is about device interoperability, but also provides provisioning and
update).

Over the next two weeks we’ll study these in some detail, and implement first pro-
visioning and then update.

4.1 Provisioning and Update

When you first power up a Chromecast or a Firestick (for example) and plug it into
your TV, it is useless. These devices, sharing many typical characteristics of the
IoT, are special purpose stream-and-decode machines that are fed a URL by their
controller (your smartphone) and then act as an intermediary between the cloud
and the television. Without a network connection, nothing can happen.

Whenever we supply IoT devices to third parties, we face the same problem. To
solve it either:

1. the device has to ship with network credentials, or
2. it must support end-user configuration

Chromecast leverages Google’s Home phone app to achieve the second of these.

Secondly, all IoT devices must be considered vulnerable to attacks of one sort or
another, just like any networked computer. This course is fairly new, but has already
seen two major vulnerabilities in the ecosystems we rely on:

• In 2017 WPA was shown to be vulnerable: “KRACK (Key Reinstallation Attack)
… on theWPA…By repeatedly resetting the nonce transmitted in the third step
of the WPA2 handshake, an attacker can gradually match encrypted packets
seen before and learn the full keychain used to encrypt the traffic.” Wikipedia

85

https://en.wikipedia.org/wiki/KRACK

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• In autumn 2019 the ESP32’s secure boot (encrypted flash) was shown to be
vulnerable to voltage glitching.

The first of these (WPA) was fixed fairly rapidly by patches to the relevant libraries.
The second was impossible to fix in firmware, and as a result Espressif had to de-
velop version 3 silicon (which became available in 2022 as the ESP32-S3). The
attack is quite difficult and restricted (being a. physical, b. complex and c. per-
device), but no software patch is possible to fix the vulnerable existing hardware:
all ESP32s in the field prior to this point will continue to be susceptible to this at-
tack.

Quoting (Schneier 2017) (Click Here to Kill Everybody: Security and Survival in a
Hyper-connected World):

“Everything is a computer. Ovens are computers that make things hot; refrig-
erators are computers that keep things cold. These computers—from home
thermostats to chemical plants—are all online. The Internet, once a virtual ab-
straction, can now sense and touch the physical world. As we open our lives to
this future, often called the Internet of Things, we are beginning to see its enor-
mous potential in ideas like driverless cars, smart cities, and personal agents
equipped with their own behavioral algorithms. But every knife cuts two ways.
All computers can be hacked. And Internet-connected computers are the most
vulnerable. Forget data theft: cutting-edge digital attackers can now crash
your car, your pacemaker, and the nation’s power grid.”

Clearly, we need the ability to update our devices in the field; in the worst case
we might even need to brick1 the hardware and send a replacement! How do we
manage this process? Read on…

4.1.1 WiFi-based Provisioning

The most obvious way to provision (or provide network credentials to) a network-
connected microcontroller like the ESP32 is to connect over WiFi and send the cre-
dentials over the radio. There have been several options developed to do this,
including:

• WiFi Protected Setup (WPS, an early attempt) — but some forms were shown
to be crackable in 2011, and it is now often disabled on devices that support it

• SmartConfig — but this is mostly only availible for Texas Instruments (TI) chips
(and the non-AES version relies on security by obscurity: ouch!)

1If you damage your hardware beyond repair, it turns from an interesting electronic gadget into an
inanimate lump: it becomes, in other words, pretty much like a brick. Hence the colloquial verb “to
brick,” which bears an intimate relationship with the term “FUBAR” in the engineer’s vocabulary.
It is recommended to avoid exploring these in practice as far as you can manage.

86 Hamish Cunningham

https://www.espressif.com/en/news/ESP32_FIA_Analysis

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• using the device as a WiFi access point and serving a configutation site from
the device

The SmartConfig control flow looks like this:

A more general solution, which is possible on all devices (like the ESP32) that
support operating as a WiFi access point (AP), is to allow client connections over
e.g. WPA + HTTP(S) (which is as secure as the rest of the web!) and then serve
HTML to the client that allows triggering of a scan for available networks and en-
tering of network credentials (which the device can then use to try and join itself,
as a client). This is called WiFi-based provisioning, and is a robust and common
approach. (The exercises this week are to implement this technique, using the
webserver from last week. Flow of control is a little complex, involving the ESP32,
your smartphone or laptop, and wireless router. Give yourself plenty of time to
think it through, and try to develop your own solution before looking at how mine
works.)

Recent versions of ESP IDF provide provisioning libraries, and these work both over
WiFi and Bluetooth. We’ll roll our own, which is a bit fiddly but definitely educational
:)

Hamish Cunningham 87

images/smart-config.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

4.1.2 Over-the-Air Updates (OTA)

How can we ensure that IoT devices get patched promptly when security holes
appear?

The answer is OTA, or over-the-air updates: when your microcontroller is connected
via a fast network (e.g. over WiFi), it can download new firmware versions whenever
they’re available. There are upsides, but also downsides:

• if you corrupt firmware in such a way that the device can no longer boot, you’ve
bricked your device

• the implications for flash memory resources on the device are that it must be
double (or triple) the size of a single flash image; this is because OTA updates,
where the net might suddenly drop, must be staged in a separate space on
flash (and if you want to support factory reset functionality then you also need
a third area to store the factory firmware version)

Several partitions in flash are used for update staging, e.g.:

2

Here we see three partitions in use:

• the factory partition is a baseline version that can be used for a “reset to factory
settings” function, or as a last resort boot target if other partitions become
unusable

• ota_0 and ota_1 are used one each for

– the currently running image, and
– as download space for an update image

The sequence of an update then goes something like this:

• a firmware (.bin) file and its version number are published to a web-accessible
site known to the device (e.g. by hard-coding the address into each image)

2From Luca Dentalla.

88 Hamish Cunningham

http://www.lucadentella.it/en/2016/12/22/esp32-4-flash-bootloader-e-freertos/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• the ESP periodically polls that web location (e.g. at every reboot); if the avail-
able version is greater than the current firmware version then:

– download the new firmware to whichever flash partition is currently not in
use

– verify the download; set the bootloader flag to the new partition
– restart; now the new version runs

Diagrammatically:

3

See below for an exercise to implement this style of OTA.

Note that the Arduino IDE also provides a form of OTA, accessible via the Tools>Port
menu option when running an OTA capable sketch from a machine connected to
the same network as the ESP. See File>Examples>ArduinoOTA>BasicOTA for an example
sketch. (This only works via the IDE; more details on this video.)

We’ll move on to implementing OTA (on top of WiFi provisioning) next week.

4.1.3 WiFi Provisioning + OTA = ???

What happens when we combine both approaches under a web front end that pro-
vides management of the update binaries, device registration and the like? An early
attempt at this type of system (for the ESP8266 and later ESP32 and other MCUs)
was built by Andreas Spiess and colleagues, called IoTAppStory:

3From Andreas Schweizer.

Hamish Cunningham 89

images/ota-sequence.png
https://www.youtube.com/watch?v=lQavz_U8nd4
https://www.youtube.com/channel/UCu7_D0o48KbfhpEohoP7YSQ
https://iotappstory.com/
images/iotappstory.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

This project provides a library for devices to poll a firmware repository and recognise
when updates are available, then triggering OTA update. It follows an “app store”
model as described in this video.

4.1.4 RainMaker Provisioning & OTA

When we’re programming the ESP32, we can take advantage of RainMaker, which,
from IDF 4.0 and above, is Espressif’s official solution to the provisioning and OTA
tasks. (It also provides a simple device control and configuration mechanism via
library calls and a phone app. Also note that there are lower level APIs in IDF that
are applicable to provisioning and OTA, and involve less commitment to Espressif’s
IoT architecture than Rainmaker.)

90 Hamish Cunningham

https://www.youtube.com/watch?v=_4NRqIa-cvo
https://rainmaker.espressif.com/
images/rainmaker-intro.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

We call the library from app_main, specifying any parameters we would like to expose
on the device. We also upload firmware to a repository to support OTA. We can now
manage the device from a phone app.

The advantages:

• reasonably stable
• efficient
• Android and iOS support

Disadvantages:

• relies on an Espressif cloud account (on AWS)
• the free version is limited to small numbers of devices

For example, if we have three devices integrated (or “claimed”) on our RainMaker
account, the android app displays:

Hamish Cunningham 91

images/rainmaker-intro.png
images/rainmaker-intro.png
images/rainmaker-1.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

If we then open a device that exposes three controls, we see something like this:

92 Hamish Cunningham

images/rainmaker-1.png
images/rainmaker-1.png
images/rainmaker-2.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

All this is so neat, Espressif drew a pretty picture to go with it :)

Give it a try? But try the exercises below first!

Hamish Cunningham 93

images/rainmaker-2.png
images/rainmaker-2.png
images/rainmaker-3.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

4.1.5 Provisioning and OTA with Matter

New kid on the provisioning and OTA block is Matter, a Connectivity Standards Al-
liance initiative that launched in 2022. Matter is
a proprietary standard for home automation that is royalty-free, with manu-
facturers only incurring certification costs. Announced on 18 December 2019,
Matter aims to reduce fragmentation across different vendors, and achieve
interoperability among smart home devices and Internet of things (IoT) plat-
forms from different providers. The project group was launched and introduced
by Amazon, Apple, Google, Comcast and the Zigbee Alliance, now Connectiv-
ity Standards Alliance (CSA). Subsequent members include IKEA, Huawei, and
Schneider. Matter-compatible software updates for many existing hubs became
available in late 2022, with Matter-enabled devices and software updates ex-
pected to be released during 2023. WikiPedia

It is early 2023 as I write this, and I’m short on time, so I asked ChatGPT to help:

Please give me a short introductory paragraph to the new Matter IoT standard,
and then describe how it supports provisioning and OTA.

Matter is a new standard for the Internet of Things (IoT) that aims to make
smart home devices more interoperable and secure. It was developed by the
Connectivity Standards Alliance (formerly known as the Zigbee Alliance) in col-
laboration with major tech companies such as Apple, Google, Amazon, and
Samsung. Matter builds on existing IoT standards, such as Zigbee and Thread,
and uses the IP protocol to provide a common language for smart devices. With
Matter, users can easily connect and control a wide range of smart devices from
different manufacturers, without the need for additional hubs or bridges.

Matter also supports two key features for IoT devices: provisioning and over-
the-air (OTA) updates. Provisioning refers to the process of setting up and con-
figuring a new device on a network. Matter devices can be provisioned using
a mobile app that scans a QR code on the device or by using a secure method
such as NFC or Bluetooth LE. This makes it easy for users to add new devices
to their network without the need for complicated setup procedures.

OTA updates are another important feature supported by Matter. With OTA,
devices can receive updates to their firmware or software over the air, without
the need for physical access. Matter devices can receive OTA updates securely
and reliably, ensuring that they always have the latest features and security
patches. This is especially important for IoT devices, as they are often deployed
in hard-to-reach locations and may be vulnerable to security threats. With Mat-
ter, users can be confident that their smart devices are up-to-date and secure.

94 Hamish Cunningham

https://en.wikipedia.org/wiki/Matter_(standard)

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

chat.openai.com, 24th Feb 2023

Jeez, how cheap can this guy get?! Wikipedia is bad enough, though at least it was
written by human beings. Now he’s dumping robotext on us! That’s it, I’m going to
the bar instead.

An interesting problem, isn’t it? What can we trust? There have been fascinating
studies of Wikipedia authorship, and, despite the heroic efforts of its curators, we
would be foolish to place 100% trust in anything there of a contentious nature or of
potential marketing value. Now we’re faced with an even thornier problem: what
of the probabilistic continuations that the new ‘foundational models’ of the biggest
of the Generative Pre-trained Transformers gives us? We’ll return to the question
of AI in Chapter 6, but for now let’s just say: don’t believe anything you haven’t
verified from several sources!

In this case I’ve read through the above quotes, and they seem correct to me,
though one or two details may be incorrect, and I note that the GPT training data
currently was all collected before 2020, whereas Matter has only more recently
been finalised….

Here are a couple more sources:

• There’s a good guide from Seeed Studio.
• Stacey on IoT has a lot of good Matter coverage, going back to discussions
about its origins in the CHIP project (Connected Home over IP) through to a
(late 2022) review of why Matter isn’t ready.

Matter is probably too new to be sure of as yet, but we should definitely keep an
eye.

4.2 COM3505 Week 04 Notes

4.2.1 Learning Objectives

Our objectives this week are to:

• deepen our knowledge of IoT device provisioning
• continue practical work with the ESP’s wifi stack, and develop provisioning
capabilities in firmware

• finish off our hardware prototyping work (which we’ll restart for projects around
week 8)

4.2.2 Assignments

To turn things into internet things we need to connect them to a network. One way
to connect a device without a user interface to a wifi network is to make it a wifi

Hamish Cunningham 95

https://chat.openai.com/chat
https://www.seeedstudio.com/blog/2022/11/03/how-matter-will-transform-your-smart-home/
https://staceyoniot.com/?s=matter
https://staceyoniot.com/you-can-learn-much-about-matter-from-the-project-chip-github-repo/
https://staceyoniot.com/podcast-matter-upgrades-arent-ready-for-prime-time/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

access point and serve a website that displays what other network access points
are available. We can then allow the user to choose an access point and enter the
corresponding key.

We have three exercises this week that build up to this type of provisioning func-
tionality, and one (optional) hardware exercise to polish your soldering skills:

• Ex07: simple utilities for creating web pages

– C (and to a degree C++) is a low-level language, and generating HTML
simply and efficiently can be challenging. To maintain a different long
string for each page you want to serve on the device is unwieldy and
error-prone. Create some utilities for representing and manipulating HTML
elements and serving pages. (You might take inspiration from templating
libraries, for example.)

• Ex08: become a web client and send your email & the MAC address of your
ESP to our server (see Blackboard for the IP address)

– you’ll need to use the WiFiClientSecure class from the WiFi library, see File
>Examples>WiFiClientSecure in the Arduino IDE

• Ex09: adapt Ex07/08 to allow connection of the device to arbitrary networks

– in Ex06 you learned how to create a wifi access point and serve HTML
pages to devices connected to that access point

– using the WiFi.scanNetworks()method, serve HTML pages that list the avail-
able access points that the ESP can see, and allow a user to choose one,
enter its key, and have the ESP connect to that network

– WiFi.printDiag(Serial); is useful for printing wifi status
– the default IP address of the ESP when running in access point mode is
192.168.4.1 – so if you join the ESP’s network from a phone or laptop, go
to http://192.168.4.1 to see pages served from the device

• Hardware 4 (optional): move last week’s nine LED breadboard prototype onto
matrixboard and experiment some more with the 9LEDs firmware

4.2.2.1 Coding Hints

Ex07 is about templating: basic string manipulation to create HTML from compo-
nent parts. The model solution uses an array of strings, but there are, as usual,
many different valid solutions (inc. reusing 3rd party libraries).

Ex08 needs to use WiFiClientSecure, talk to the server (detailed on Blackboard, or
create your own) on the specified port, and get the URL and paths correct. Under
those circumstances it will return a line of text starting “Received….”

96 Hamish Cunningham

http://192.168.4.1/
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/9LEDs

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Ex09 is about running a web server (and wifi access point to connect to it) which
lists all the other access points the ESP is in range of, and allows you to tell the ESP
the credentials needed to connect to one of your choice.

We can use the solutions from Ex06 (create an access point and web server) along
with Ex07 (utilities for creating web pages) to get us started here. (See the arrange-
ments for running multiple setups and loops in exercises/Thing/sketch/sketch.ino for
an example of chaining the various exercises together.) Then for Ex08 and Ex09
we can use the WiFi and WiFiClientSecure classes, with calls to the following methods
(and others):

1 WiFi.begin(SSID, PSK);
2 WiFi.status();
3 WiFi.localIP();
4 webServer.handleClient();
5 myWiFiClient.connect(com3505Addr , com3505Port);
6 myWiFiClient.print(
7 String("GET ") + url + " HTTP/1.1\r\n" +
8 "Host: " + com3505Addr + "\r\n" + "Connection: close\r\n\r\n"
9);
10 myWiFiClient.available();
11 myWiFiClient.stop();
12 myWiFiClient.readStringUntil('\r');

For Ex09 my code additionally uses:

1 WiFi.scanNetworks();
2 WiFi.SSID(i);
3 WiFi.RSSI(i);

Dive in!

4.2.2.2 Which WiFi Network? What if it Doesn’t Connect?

It is possible to get an ESP to connect to Eduroam, but the Enterprise WPA security
protocol can be tricky to navigate. You may find it convenient, therefore, to connect
your ESP to a portable hotspot created via your phone or other device. On campus
you can also use the “other devices” network; see Blackboard for details.

If your ESP doesn’t connect, don’t panic. Try printing some diagnostics, phoning a
friend or standing on your head and singing the Congolese national anthem back-
wards in Latin a couple of times. Then try some more diagnostics.

You may also hit problems getting other devices to connect to the ESP32’s internal
access point. Different operating systems try to guess the characteristics of the
networks they are asked to join in various ways, and this sometimes interacts badly
with themodel code. Android in particular may (or may not!) refuse to join the ESP’s
access point, or join and then fail to deliver HTTP requests to the server we set up.
Things to try if this happens:

Hamish Cunningham 97

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• magic.sh erase_flash4 and burn the firmware again
• try joining from a different machine to do the wifi provisioning
• power down, wait a minute, power up
• hit it with a hammer5

When you’ve managed to get the ESP onto a wifi network, it will (on serial) report
its IP address; you can then use that IP to connect to the web server instead of
192.168.4.1, which tends to be more reliable.

Finally, you probably don’t want to use the University’s WifiGuest network, as this
requires sign-in. (Kudos if you manage it; give me a demo!)

4.2.2.3 Details of Our Cloud Server (for Ex08)

The internal cloud server for the course accepts simple GET requests with parame-
ters that can be used to pass a little data to our persistent store.

The data format is key=value, e.g.: email=hamish@gate.ac.uk, and it requires a .ac.uk
email address. A request to store the device’s MAC address would look like this:
https://IP_ADDRESS:9194/com3505-2024?mac=ThisESPsMAC&email=MyName@sheffield.ac.uk

(The value for IP_ADDRESS is given on your Blackboard page for the course.)

4.2.3 Moving 9 LEDs to Matrixboard

Note: this requires soldering, which is optional. No worries if you don’t want to do
it, just have a quick skim of the written material here and move on.

Last week we built a 9 LED breadboard. This week the task is to transfer the circuit to
a piece of matrixboard and solder it up into a more permanent form. (Breadboards
are great for short-lived experiments, but some of the projects you might build later
on need to be more robust, so practicing our soldering and circuitry skills is a good
idea.)

You’ll need your breadboard, and some more parts from your kit:

4If you’re not using the magic.sh script idf.py will do a similar job like this: idf-py erase_flash,
or google your IDE’s solution.

5Hitting it won’t help of course, but might make you feel better. Temporarily: when Andy asks you
to explain why you need a new one the happy feeling will likely evapourate. You could try blaming
it on the silly hat that Guy made you wear?

98 Hamish Cunningham

images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Try folding the resistors in a group:

Place the resistors and LEDs first, ready for soldering:

Hamish Cunningham 99

images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-01-500.jpg
images/nine-leds-mb-04-500.jpg
images/nine-leds-mb-06-500.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Soldering this circuit is fiddly; remember to make sure both surfaces are hot before
applying the solder.

Use bent wire from some of the components to form a ground rail:

100 Hamish Cunningham

images/nine-leds-mb-06-500.jpg
images/nine-leds-mb-06-500.jpg
images/nine-leds-mb-07-500.jpg
images/nine-leds-mb-09-500.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

When you’ve done the LEDs and resistors, add a ground jumper, and then move
the other jumpers (connecting the GPIOs to the LEDs’ anodes) over:

Hamish Cunningham 101

images/nine-leds-mb-09-500.jpg
images/nine-leds-mb-09-500.jpg
images/nine-leds-mb-10-500.jpg
images/nine-leds-mb-13-500.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Fold the wires together to make connections between jumpers, LEDs and resistors,
and solder them:

Having an extra pair of hands helps!

102 Hamish Cunningham

images/nine-leds-mb-13-500.jpg
images/nine-leds-mb-13-500.jpg
images/nine-leds-mb-14-500.jpg
images/nine-leds-mb-17-500.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Now burn the firmware in the (e.g. using the 9LEDs code).

4.3 Further Reading

We’ll start looking at local communications protocols next week, and also a bit more
history and context; you could get ahead by checking these out:

• Sparkfun tutorials on communications protocols:

– learn.sparkfun.com…serial
– learn…i2c

• (Sterling 2014) The Epic Struggle for the Internet of Things.
• (Rubell 2018) Adafruit.io.
• (Kranenburg and Bassi 2012) Discussion Paper on the Internet of Things.

Finally, (The Economist 2019)’s Chips with everything (from The Economist Sept
2019 Special Issue on the IoT) presented an interesting summary of the IoT gold-
rush in general, and smart homes work in particular, which we excerpt below:

One way to think of it is as the second phase of the internet. This will carry
with it the business models that have come to dominate the first phase—all-
conquering “platform” monopolies, for instance, or the data-driven approach
that critics call “surveillance capitalism.” Ever more companies will become
tech companies; the internet will become all-pervasive. As a result, a series

Hamish Cunningham 103

images/nine-leds-mb-17-500.jpg
images/nine-leds-mb-17-500.jpg
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/9LEDs
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

of unresolved arguments about ownership, data, surveillance, competition and
security will spill over from the virtual world into the real one.

Start with ownership. As Mr Musk showed, the internet gives firms the ability to
stay connected to their products even after they have been sold, transforming
them into something closer to services than goods. That has already blurred
traditional ideas of ownership. When Microsoft closed its ebook store in July,
for instance, its customers lost the ability to read titles they had bought

Virtual business models will jar in the physical world. Tech firms are generally
happy to move fast and break things. But you cannot release the beta version
of a fridge.

In the virtual world, arguments about what should be tracked, and who owns
the resulting data, can seem airy and theoretical. In the real one, they will feel
more urgent.

The need for standards, and for iot devices to talk to each other, will add to the
leaders’ advantages—as will consumer fears, some of them justified, over the
vulnerability of internet-connected cars, medical implants and other devices to
hacking.

The trick with the iot, as with anything, will be to maximise the benefits while
minimising the harms. [p. 13]

Attracted by the lure of new business, and fearful of missing out, firms are pil-
ing in. Computing giants such as Microsoft, Dell, Intel and Huawei promise to
help industries computerise by supplying the infrastructure to smarten up their
factories, the sensors to gather data and the computing power to analyse what
they collect. They are competing and co-operating with older industrial firms:
Siemens, a German industrial giant, has been on an iot acquisition spree, buy-
ing up companies specialising in everything from sensors to office automation.
Consumer brands are scrambling, too: Whirlpool, the world’s biggest maker of
home appliances, already offers smart dishwashers that can be controlled re-
motely by a smartphone app that also scans food barcodes and conveys cook-
ing instructions to an oven.

A world of ubiquitous sensors is a world of ubiquitous surveillance. Consumer
gadgets stream usage data back to their corporate makers. Smart buildings—
from airports to office blocks—can already track the people who move through
them in real time. Thirty years of hacks and cyber-attacks have proved that
computers are insecure machines. As they spread, so will that insecurity. Mis-

104 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

creants will be able to exploit it remotely and at a huge scale. [p. TQ 4]

Consumers can buy smart light bulbs, such as Hue from Philips, a Dutch elec-
tronics giant, which can be switched on or off by phone or voice and can gen-
erate thousands of tones and shades. Viewers of “12 Monkeys,” an American
science-fiction tv series released in 2015, can download an app that will sync
with their light bulbs, automatically changing their colour and brightness to
match the mood of an episode moment by moment.

On the difficulties of hooking Smart Home systems together (Ben Wood):

“It’s a very Heath Robinson kind of patchwork, a jigsaw puzzle of connectivity.”

products from one manufacturer often fail to work well with those from another.
Standards do exist: Zigbee and z-wave are wireless networking protocols de-
signed for the type of low-power radios found in smart-home gadgetry. But
many firms either use proprietary standards or implement existing standards
in ways that prevent their products working with those from other companies.

Many companies are involved. Tim Hatt at gsma Intelligence says that telecoms
firms are keen to find new, higher-margin businesses rather than simply acting
as “bit pipes,” so they have built smart-home offerings as well. Vodafone, a
telecoms company, advertises the v-Home hub as a central control point for
smart-home devices. sk Telecom, a South Korean firm, has the Nugu. at&t, an
American company, offers its Smart Home Manager. Others are startups, such
as Wink, which launched with backing from General Electric. In Britain, even
British Gas, a former state-owned energy monopoly, has got in on the act. It
launched Hive, a smart-home ecosystem in 2013.

That fragmentation means risks

Until fairly recently, says MrWood, the assumption was that smart homes would
be controlled from phones. But, he says, the reality is different. “Pulling out
your phone, unlocking it, tapping an app, then using it to turn the lights on, is
muchmore complicated and annoying than simply walking across the room and
pushing a button.” Voice, he says, is by far the most convenient user-interface.

Amazon’s Alexa and Google Home, the two firms’ smart-speaker products, al-
ready have greater market penetration than rival smart-home hubs. [pp. TQ
5-6]

Hamish Cunningham 105

5 Sensing and Responding

We’ve looked at what the IoT is and where it came from. We’ve delved into the
build and burn tools that we need to update the firmware on an IoT device. We’ve
blinked (or actuated) LEDs and read (or sensed) from switches. This chapter will
look in more detail at the various ways in which the microcontrollers in IoT devices
(like the ESP32) talk to sensors and actuators, or, to put it another way, at the local
protocols available on the device. We’ll also look in a bit more detail at what types
of sensor and actuator we will typically encounter in the IoT.1

The practical side of the chapter will then continue from last week’s work on provi-
sioning with an exercise on over-the-air (OTA) update.

5.1 Analog and Digital Sensors

A sensor is an electronic component designed to mesh the physical and digital
worlds2 by converting a physical phenomenon into a signal which can be measured
electrically. Sensors can be broadly classified as either analog or digital, and either
active or passive. An analog sensor produces a continuous output signal whereas
a digital sensor produces a discrete (usually binary coded) output signal. An active
sensor requires an external power supply to generate an output reading whereas a
passive sensor does not.

When we want to turn an analog signal into a digital one we need to think about
both:

• the time resolution (or sample rate) – e.g. 44.1 KHz (44 thousand cycles per
second)

• the amplitude resolution (number of bits) – e.g. 16 bits for 65,536 different
levels

In other words, we have to consider how often we will sample the signal, and at
what accuracy each of those samples will be taken. The consequences of these
1This material is derived from a lecture by Gareth Coleman. Thanks G!
2In fact we’re simplifying history a bit if we say that sensors were originally designed to mesh the
physical and digital, as the original electrical sensors pre-date the use of numerical information
processing in digital computing machines. Early examples included thermistors and microphones,
in the 1800s. In modern usage, however, we’re almost always interested in turning whatever
electrical signal is generated by our sensor into a digital representation of that signal, in order to
manipulate it in the digital realm that underlies almost all contemporary computational processes.

107

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

decisions dictate how much information loss the digitisation process will result in.
Visually:

3

The X axis in these graphs represents time (“t”) and the Y axis is the strength of the
analog signal (or amplitude, “A”). If the signal is varying very rapidly then we need
to sample very often in order to capture the changes, and if the signal is varying
between very large and very small amounts then we need a large number to store
all its different possible levels. For sound waves, sampled from the output of a
microphone, it is typical to take more than 40,000 samples per second and to use
a 16 bit number to distinguish the loudness level at each of those points in time.
(This is the standard which CD audio uses, for example.)

5.1.1 Two Ways to Sense Light Levels

As an example of analog vs. digital sensing, consider these two light sensors, both
of which convert the amount of light incident upon them into electrical signals:

• A Cadmium-sulfide (CdS) cell is a passive, analog sensor that changes its re-
sistance based on how much visible and IR light it receives. E.g.:

• A TSL2561 sensor (the small chip in the centre of the blue breakout board) is
an active, digital sensor. It gives a readout of brightness in Lux using the I2C
digital protocol. E.g.:

3From rpi.edu/dept/phys.

108 Hamish Cunningham

images/analog-vs-digital.png
https://www.rpi.edu/dept/phys/ScIT/InformationTransfer/sigtransfer/signalcharacteristics.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Many hundreds of different sensors are available, measuring everything you can
think of and a few others besides. They range in price from a few pennies to many
thousands.

In common with many Swiss people, Andreas Spiess lives in a building with an
atomic shelter. Check out this video for his description of building a Gieger Müller
Tube sensor (or Geiger Counter) and associated sensor fun!

5.2 Reading from Analog Sensors

In general when designing sensing equipment in our IoT devices we prefer to find
digital equipment that talks to the microcontroller on one of the standard buses
that our SDK has library code support for (e.g. SPI, I2S or I2C; see below). In cases
where we can’t find a digital version of the sensor, however, we can fairly easily
perform direcy measurement of analog signals on the ESP32 as follows.

To begin with we need to check that the voltages produced by our sensor fall into
an appropriate size range for the microcontroller to measure. If the values are too
high we will need to reduce them; they are too small then we’ll need an amplifier.
The former is easy, the latter not so :(

Hamish Cunningham 109

images/advance-sensor-set-arduino-large.jpg
https://youtu.be/K28Az3-gV7E

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Let’s say that we’re using a range of between zero and one volt (or 0–1.1V as used
in this example from Espressif). We can easily expand the range to say 0-5v using
a potential divider, in which two resistors allow us to tap off a reduced signal like
this:

The signal at “Vout” is found according to this formula:

Online tools can help with the maths, choosing the best fit of resistor values and so
on.

We have expanded the range of signals we can deal with by reducing the signal
that presents at the microcontroller (as “Vout”). In the other case (where we have
signals too small to measure), reducing the input range (e.g. to 0-0.1v) requires
active amplification of the signal, which we might typically address by adding a
dedicated circuit board for the purpose. The amplification problem can be quite
hard to solve reliably, as when we increase the signal we are likely to increase the
amount of noise we’re picking up at the same time. Specialist sensing devices for
very small analog signals are often quite expensive as a result!

After reading from an analog sensor, we perform the conversion to digital by means
of an Analog to Digital Converter (ADC). An ADC samples the analog voltage and

110 Hamish Cunningham

https://github.com/espressif/esp-idf/tree/045163a2ec/examples/peripherals/adc/continuous_read
images/potential-divider-formula.png
images/potential-divider.png
https://www.ti.com/download/kbase/volt/volt_div3.htm

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

converts it into a digital number. The ADC has a voltage range and a number of
bits; in our case on the ESP32 these are 0-1V and 12bit respectively. (Other ranges
are available but aren’t very linear.) If we use 12 bits this means the digital number
reported is between 0-4095 (2^12 = 4096). (Note that this limits the resolution of
our measurements to ≅ 0.25mV.)

Here’s the code to take a reading from pin A0 (which connects to the ESP’s analog-
to-digital converter two, ADC2):

1 const int sensorPin = A0; // input pin for analog reading
2 short sensorValue = 0; // 16 bit int for value from sensor
3
4 void setup() {
5 Serial.begin(115200); // init serial monitor at 115200 baud
6 pinMode(sensorPin , INPUT); // set sensor pin to be an input
7 }
8
9 void loop() {
10 sensorValue = analogRead(sensorPin); // take reading and store
11 Serial.println(sensorValue); // print on serial monitor
12 delay(1000); // wait for 1000ms (= 1 second)
13 }

Does it feel strange to see an integer (short sensorValue above) used for an analog
voltage? As noted earlier, when we digitise an analog signal we’re shifting it from
the continuous world (which might at first sight seem more naturally represented
as floating point) to the discrete. As long as our integer is wide enough to store
enough amplitude values for the purposes we are reading the sensor for, then it is
perfectly appropriate.

In the exercises section below we’ll look at the ESP32’s (capacitative) touch sensing
capabilities, which also read an analog signal and produce a digital output.

5.3 Digital Sensors

In some cases the signal produced by a sensor is binary to begin with – for example,
switches may be either on or off, and we can read that binary state directly from
the microcontroller’s general purpose input/output (GPIO) pins.

Example code:

1 const int switchPin = 12; // select the input pin for the switch
2 bool switchState = 1; // for the value coming from the sensor
3
4 void setup() {
5 Serial.begin(115200); // serial monitor at 115200 baud
6 pinMode(switchPin , INPUT_PULLUP); // pull-up, see below
7 }
8
9 void loop() {
10 switchState = digitalRead(switchPin); // read digital input

Hamish Cunningham 111

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

11 if (switchState == false) {
12 // do stuff when switch pressed
13 // (note reverse logic i.e. false, or LOW, means pressed)
14 }
15 }

It is also now common for sensors to be pre-packaged with dedicated circuitry to do
the analog-to-digital transformaion before the signal ever leaves the sensor housing.
In this latter case, it is usual for the output from the sensor to use one of a handful of
dedicated communications protocols intended; the next section describes several
of these protocols.

5.3.1 Avoid Floating Voters

When using digital reads we need to be careful that our input pins aren’t left “float-
ing” in order to minimise ghost signals that may otherwise be triggered by noise
picked up on the circuitry we’re connected to. In other word, inputs don’t like to
be left unconnected or “floating” – this results in fluctuating signals and can cause
other, intermittent and difficult to diagnose problems.

It is common therefore to add a resistor that bridges the input to a stable value,
either high or low. When connected to the positive supply voltage, it is a pull-up
resistor. When the resistor is connected to ground the resistor is called a pull-down
resistor. So long as the resistor is a moderately high value it will stop the input
floating, but doesn’t interfere with normal operations (5-10Kohms is typical).

An example schematic of a pull-up resistor:

And a pull-down:

112 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Note that when we read from these “sensors” (e.g. using digitalRead(switchPin)) the
switch press will result in a LOW (or false, or 0) value for pull-up ciruits and a HIGH
(or true, or 1) value for pull-downs. For pull-ups, the normal (switch open) state
results in a voltage being present on the input pin. Then when the switch is closed
it pulls the pin to ground, dominating the tiny current that will flow through the (high
value) resistor. For pull-downs the reverse is true. Confused? Try both!

5.3.2 Vcc by any Other Name Would Smell as Sweet

While we’re talking about circuit schematics, let’s clear up some terminological is-
sues. Confusingly there are several different terms for the positive and negative
voltages that power electronics:

• Positive supply voltage is often called VCC but you will also see it referred to
as Vin, V+, Vs+ and VDD.

• Negative supply voltage is often called VEE or VSS, Vs- or V-.
• Most often with digital circuits the most negative voltage is zero volts – we
don’t work with bidirectional currents (AC), so the negative supply voltage is
also Ground, GND or 0V.

Clear? You’re a genius! Give yourself a huge slap on the back and treat yourself to
a chocolate bar this instant.

Hamish Cunningham 113

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

5.4 Local Protocols: UART, SPI, I2C, 1-Wire…

IoT devices have more protocols associated with them than the average farm-yard
dog has fleas. WiFi, LoRaWAN, Bluetooth, NB-IoT, Sigfox… although these vary in
range from a few meters (Bluetooth) to several tens of kilometers (LoRaWAN etc.)
they are all, relatively speaking, long-range protocols. In this section we look at
short-range, or local protocols.

Local protocols define communications mechanisms for microcontrollers to talk to
sensors and actuators using buses (transmission wiring) of various types. For ex-
ample, the I2C (Inter-Integrated Circuit) protocol toggles the values of a Serial Data
Line (SDA) and a Serial Clock Line (SCL) to transmit data up to a few megabits per
second. On an oscilloscope an I2C transmission might look like this:

Different protocols use different transmission strategies, and their data rate, viable
circuit length, reliability and ease of use all vary depending on how these strate-
gies are organised. One thing that they all do is to provide an easier data transfer
method than bit banging: toggling GPIO directly with firmware to send signals to or
collect signals from peripheral sensors or actuators. Except for the very simplest
of cases (like those exemplified above where we read a switch state from an input
pin), local communications protocols are a more robust and simpler to implement
option.

We’ll look at a small handful of common protocols below, after a note on terminol-
ogy.

114 Hamish Cunningham

images/i2c-scope.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

5.4.1 Terminology

In the old days, when I were a lad, we used to call some devices ‘master’ and
others ‘slaves.’ Very, very slowly, engineers became aware that using these words
reflected our shameful history of slavery, and was offensive to many victims of
the legacies of slavery (in racism, bigotry and discrimination). Now there is an
ongoing project to replace these terms. Although you will still find these terms
used, especially in older texts, my preferred alternative is ‘main’ and ‘secondary’
– as they preserve the initial letters (electronics loves its acronyms!) – but others
use ‘controller’ and ‘peripheral.’ Please don’t use the obsolete terms, and if you
find any reference to one that I’ve missed here, please let me know!

(Incidentally, one of the places where it is difficult to update the terminology is in
git repositories, where ‘master’ refers to the default branch. Because many scripts,
continuous integration tools and documented URLs use the old terms it can be im-
possible in practice to replace the old nomenclature. We compromise by using the
better terms for all new repositories.4)

5.4.2 UART

The Universal Asynchronous Reception and Transmission (UART) protocol (or serial
port) is at the simple end of the food chain.

As in other cases, digital highs and lows are the basis for communications for the
UART protocol. The most common setup is to have a single start bit (LOW), 8 data
bits and then a stop bit (HIGH). Each group of 8 data bits is a byte that represents
a character in ASCII.

5

4If you’re a materialist, you may be tempted to think that just changing the language of oppression
will not actually fix the problem, and I would agree to some extent. What we really need is equality
and social justice, and these things require massive structural change in our broken economic and
power systems. However, making the effort to use language that is less obviously tied to the worst
elements of our shared past shows intent, and that alone is a worthwhile action.

5From electronics.stackexchange.com.

Hamish Cunningham 115

images/uart.png
https://electronics.stackexchange.com/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Seeedstudio provide a useful comparison of UART, SPI and I2C:

UART I2C SPI

complexity: simple easy to chain
many devices

complex as
devices increase

speed: slowest faster than UART fastest

devices: up to 2 devices up to 127 but may
get complex as
devices increase

many, but there
are practical limits
and may get
complicated

wires (plus
ground):

1 2 4

duplex: full duplex half duplex full duplex

mains /
secondaries:

single only multiple
secondaries and
mains

only 1 main but
can have multiple
secondaries

There’s a code example for UART below.

5.4.3 SPI

The Serial Peripheral Interface (SPI) is a bit more complex, using synchronous sig-
naling with a clock line in addition to the communications lines. This means that
communications can be much faster than using a simple serial protocol like UART.
In addition to these lines, each device has a chip select line that is used to select
the device that you want to respond to the data. This means that several devices
can use the same bus, only talking on the bus when their chip select line is pulled
low.

116 Hamish Cunningham

https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
images/spi2.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

6

Counting ground, this SPI needs four bus lines: MOSI (Main Out Secondary In); MISO
(Main In Secondary Out); SCLK (Serial Clock). In addition each device needs its own
chip select line.

5.4.4 I2C

The Inter-Integrated-Circuit (I2C, or I²C if we’re being posh) protocol is more complex
still, using its two wire bus to potentially link up to 127 devices.

7

Secondary devices are addressed by the main device using signals on the bus itself
instead of using separate select lines, and each device listens to the bus and only
responds when it is addressed directly.

I2C is alone in the buses we’re covering here in providing a delivery guarantee, with
confirmation that the listener device received the payload. Note that this some-
times results in bus lock-ups!

There’s a code example for I2C below.

6From Sparkfun.
7From: Sparkfun.

Hamish Cunningham 117

images/spi2.jpg
images/spi2.jpg
images/i2c2.jpg
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/i2c

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

5.4.5 1-WIRE

Yet more complex (and less common in the circuits we have worked with) is 1-Wire,
a protocol that is somewhat similar to I2C but, as its name suggests, only uses a
single data line (plus, as usual, ground).

We don’t expect you to know the details of 1-Wire; happily, a well tested and doc-
umented library is available for use with minimum effort. Like I2C 1-Wire allows
multiple devices. It supports a lower data rate than I2C but longer cable length (up
to 50m+ vs. 1-2m).

Notably, 1-wire is used by Apple MagSafe power supplies (and by Dell and others) to
exchange signals between the computer being powered and the circuitry controlling
the PSU. No doubt there is an advantage to this arrangement somewhere, but as
Gareth says, “Now my laptop won’t charge unless I have an approved charger – for
my own comfort and safety.” :(

5.4.6 Other Local Protocols

Other protocols we may come across include:

• The Inter-Integrated Circuit Sound Bus (I2S or I²S), is typically used for sound
transfer, e.g. from a microphone or to a speaker driver board. (We’ll see this
in use in Chapter 8 for sound input.)

• The RS232 or RS435 (Electronic Industries Alliance Recommended Standard)
serial communications protocols. We used this to talk to the relay banks that
drove solenoids to control watering on our AquaMosaic Green Wall at Gripple
(picture below; see also Chapter 10).

• The Controller Area Network (CAN) bus is a message-based protocol that is ex-
tremely common in automotive applications. If you’re a nervous car passenger
make sure never to look into how many microcontrollers a modern petrosaur
contains, and at how they communicate, and at what the consequences may
be if things go badly wrong :)8

8Thinking about the vunerability of car control systems reminds me of a particularly hair-raising
landing in Athens a couple of decades ago, in an Airbus A320, one of the first planes to use a
“fly by wire” digital control system. The old Athens airport was beside the sea and used to suffer
from swirling cross-winds when a storm blew up, and on this occasion we went round three times,
aborting each of the first two runs due to massive turbulence. The passenger beside me had to
make use of the vomit bag, and none of us felt very confident that we were going to end up safe
and sound on the ground any time soon. To reassure us one of the crew came on the intercom
and said “Don’t worry, we’re quite safe, the plane is controlled by computer!” At which point the
anxiety levels of the computer scientists on the flight went up around a thousand percent :) When
we had eventually landed and were waiting for baggage, I caught sight of the pilot. (It was an old
airport, and the crew picked up their bags from the same place as the passengers.) The pilot’s
hair was plastered to his forhead by sweat, and he was dragging heavily on a cigarette. Luckily
the control systems did their job that evening, but it was still a pretty hairy time.

118 Hamish Cunningham

https://www.seeedstudio.com/blog/2019/12/06/what-is-rs485-and-its-difference-between-rs232/
https://en.wikipedia.org/wiki/CAN_bus

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

5.4.7 Talking the Talk: Local Protocol Examples

As with all but the most basic of communication protocols, the actual gorey details
of how data is signalled, how noise and errors are minimised, and how devices
keep out of each other’s way when sharing buses are complex. Luckily, in the
Arduino ecosystem other people have done the hard work of encapsulating all these
details in libary code. To put it another way, open source allows us to see further
by “standing on the shoulders of giants” :)9

So you (mostly) don’t need to worry about the details of the implementation, with
start and stop bits, ack(nowledgement)s, bit order, etc. (At least, that is, until stuff
starts going wrong!)

Here’s an example of using the Arduino versions of UART and I2C (the second of
which is known confusingly as Wire). You have already used the built-in UART library
to print to the serial monitor:

1 Serial.begin(115200); // initialise serial monitor at 115200
baud

2 Serial.print“(Hello ”world); // simple printing on serial

SPI and I2C are as easy to use (I2C example shown here):

1 #include <Wire.h> // include the I2C library
2 Wire.begin(); // init the port; pins 22 & 23 on ESP32
3 Wire.beginTransmission(44); // transmit to device #44 (0x2c)
4 Wire.write(byte(0x20)); // write the value 20 in hex (32 in

decimal)
5 Wire.endTransmission(); // stop transmitting

This pattern (of using library code to do the heavy lifting) is typical of our micro-
controller/sensor/actuator ecosystem – or, to quote Gareth again, “the giants are
stacked!”

9Wikipedia: in English the most familiar expression of this concept is by Isaac Newton in 1675: “If I
have seen further it is by standing on the shoulders of Giants.”

Hamish Cunningham 119

images/stacked-giants.png
images/stacked-giants.png
images/stacked-giants.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Most of the time, you can use a pre-written library that deals with all of the com-
munications details for you. These provide functions such as readSensor() – this
typically requests a reading from the device, gets the response and formats it for
you. For example the Adafruit library for the TSL2561 light sensor provides the
functions setGain() and getLuminosity(); similarly a getDustDensity() is provided by
the dust sensor library we have used for air quality monitoring; and so on.

As usual, our good friend Andreas Spiess has a nice video that’s relevant, this one
showing how to “connect many devices (sensors and displays) to one Arduino using
the I2C bus. It starts with a simple homemade bus, shows how to find out the
addresses of the different devices and ends with a demo of a system with three
devices connected to an Arduino.” Recommended.

Ok, that completes our brief tour of local protocols. Now let’s finish off this discus-
sion with a look at actuators, or the “arms and legs” of our “world robot,” to echo
(Schneier 2017).

120 Hamish Cunningham

images/stacked-giants.png
images/stacked-giants.png
https://youtu.be/QQLfzlPGjjE

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

5.5 Actuators

Broadly speaking these devices change the physical world in response to electrical
signals. These signals might be the amplitude of a sound pressure wave (to drive
a loudspeaker), or the direction and speed of travel of a motor or solenoid.

Outputs can also be information, of course – such as a tweet, an SMS, a record
in a database, or etc. – and the change that we want to create can just be a sig-
nal of some type – lighting an LED, perhaps, or running the vibration motor in a
smartphone or smartwatch.

As with our protocol-based communications above, or our digital sensor readings
before that, we’re generally in the game of picking up an existing library for what-
ever actuator hardware we’re trying to control. More giants :)

The ESP32 has several kinds of outputs that can drive actuators:

• General Purpose I/O (GPIO) – simple, on/off type
• Pulse Width Modulation (PWM) – set to a timed ratio
• Digital to Analog Converter (DAC) – create an analog voltage

None of these outputs can supply much current – 12mA at maximum. (By Ohm’s
law this 12mA limit at 3.3V implies we need a resistance of at least 275Ω in the
circuit we’re driving.)

In practive we often need an amplifier or driver to supply the power the actuator
needs, and wemay also wish to isolate our low-voltage circuitry from the equipment
we’re controlling – this is especially true of mains voltages, which can kill! (Never
work with mains circuits if you’re not a qualified electrician!) Below we’ll talk about
two ways to deal with higher power or higher voltage actuators.

Hamish Cunningham 121

images/actuators.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

5.5.1 High Power Actuators with Relays

If we want to switch a device which requires a current larger than a few miliamps
we can use a mechanical device called a relay. (We might also commonly use
transistors, especially MOSFETs, though these are a little more complex to wire
up.)

In relays we have a control circuit, and a switching circuit. A small amount of power
applied to the control circuit operates an electromagnet. Themagnetic force causes
the switch contacts to open and/or close, thus controlling the switch circuit. The
switch is completely separate from the electromagnetic coil:

When the coil power is removed, the magnetic field collapses very quickly, induc-
ing a massive voltage. We can protect against this voltage spike with a ‘snubber’
diode. Other devices that operate with a coil such as solenoids and motors also
need snubbing.

5.5.2 High Voltage Actuators with Radio Control

How do you switch mains without a risk assessment?! We encourage our students
to be adventurous in their learning… but please don’t touch any circuits that
use mains electricity!

There’s an easier way, which is also very safe: use a remote control power socket
that responds to radio control signals to switch mains electricity. We don’t need

122 Hamish Cunningham

images/relay-mechanism.png
images/relay.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

to touch the dangerous stuff. Instead, we send commands on the radio frequency
(433MHz) that the sockets are tuned to. The transmitter is a low-voltage actuator
component which is quite harmless:

The sockets are an off-the-shelf consumer item (which we never open or modify
in any way!):

Again, a pre-written library does all the hard work – e.g. mySocket.send(4281651, 24);.
More on this in Chapter 8 for our home automation projects.

5.5.3 Electric Blankets, Fish Farming and Liverpuddlians

What do cold nights, Liverpuddlian urban agriculture and the IoT have in com-
mon?!

Hamish Cunningham 123

images/433-mhz-transmitter.png
images/433mhz-mains-control.png
images/elf-power-control.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

This is a screenshot of a web page served from an ESP32 used to control

• the pump on a Farm Urban produce pod
• several electric blankets
• the WaterElf aquaponic electronics (ponics tronics) board

Now you know.

5.6 COM3505 Week 05 Notes

On the practical side of the course we’ve also now covered quite a lot of ground:
from blinking LEDs and reading from switches to getting our devices to talk to WiFi
and push data into the cloud, and last week we worked on provisioning. Let’s tie
this together with a working demo of Over-the-Air update, and we will be fairly close
to calling our first tour of IoT programming complete.

5.6.1 Learning Objectives

Our objectives this week are to:

124 Hamish Cunningham

images/elf-power-control.png
images/elf-power-control.png
https://drive.google.com/file/d/1dbX1uAWKouinD85ZTPE6FEqCssDy3RC0/view

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• learn more about IoT sensors and actuators
• experiment with the ESP32’s touch sensing capabilities
• get hands-on experience of providing firmware updates over network connec-
tions

5.6.2 Assignments

OTA is pretty fiddly. There’s only one exercise this week to give you space to think
about it carefully!

Exercises:

• Ex10:

– create firmware that works to do OTA (e.g. copy Ex10.cpp, change
FIRMWARE_IP_ADDR to match your network)

– use python -m http.server 8000 (or ./magic.sh ota-httpd) to set up a local
HTTP server

– burn the current version of sketch.ino
– increment firmwareVersion in sketch.ino, recompile and copy the .bin to the
web server space

– restart the ESP
– you should see it do OTA update
– try adding a touch sensor to your board, and using it to control OTA

Lots of notes below!

5.6.2.1 Provisioning and Firmware Update

The course repository contains exercises/Thing/sketch/Ex10.cpp and also exercises/
ProUpdThing/, which both implement firmware for WiFi-based provisioning and Over-
the-Air (OTA) updates. The former uses a local HTTP server to make the .bin avail-
able for download by the ESP; the latter uses GitLab to host the .bin and does an
HTTPS GET from there. For a third approach, have a look at Espressif’s RainMaker
API, which hosts updates on AWS and provides an oven-ready C API for driving OTA
on the ESP (via a webapp).

While working, think about possible future enhancements:

• what levels of power usage would we expect during different stages of pro-
visioning and updating? what mechanisms might we use to reduce power
consumption?

• what residual security vulnerabilities does an ESP32 running this firmware
have? what mechanisms might we use to ameliorate them? in what ways
do the new(er) ESP32-S2 and ESP32-S3 chips improve the security profile of
the architecture?

Hamish Cunningham 125

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• if your ESP was connected to a motion sensor (or accelerometer) what might
you change in your system?

5.6.2.2 Configuring Ex10

This exercise assumes that:

• the running firmware contains a version number compiled into the binary,
e.g. firmwareVersion (which the model answer sets in sketch.ino)

• an HTTP server is running on IP address FIRMWARE_SERVER_IP_ADDR, e.g. 10.0.0.20
and port FIRMWARE_SERVER_PORT, e.g. 8000

• at / (i.e. the top level of the web server) files called version.txt and N.bin ex-
ist, where N is the contents of version.txt and represents the highest available
firmware revision number currently available

So, for example, if we’ve previously installed firmware revision 3 on the board, and
then set firmwareVersion to 4 and re-compiled, and then copied the new binary to
4.bin and written 4 in version.txt, restarting the ESP would trigger an OTA update
looking like this (minus some of the cryptic boot messages):

1 setup10...
2 running firmware is at version 3
3 trying to connect to Wifi....
4connected :)
5 getting http://10.0.0.49:8000/version.txt
6 upgrading firmware from version 3 to version 4
7 getting http://10.0.0.49:8000/4.bin
8 .bin code/size: 200; 885632
9
10 starting OTA may take a minute or two...
11 [==]

100 %
12 update done, now finishing...
13 update successfully finished; rebooting...
14
15 ESP-ROM:esp32s3 -20210327
16 Build:Mar 27 2021
17 ...
18 I (24) boot: ESP-IDF v4.4.1-405-g6c5fb29c2c 2nd stage bootloader
19 I (24) boot: compile time 04:21:58
20 ...
21
22 setup10...
23 running firmware is at version 4
24 trying to connect to Wifi....
25 .connected :)
26 getting http://10.0.0.49:8000/version.txt
27 firmware is up to date

This type of process is what will be necessary for any IoT device out in the wild,
as getting the user to connect a USB cable and perform flashing is not a realistic
option :)

126 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Indeed, given how tricky it can be to flash some of the S3 boards, you might want
to use OTA as your default update mechanism! To do so, if you’re using PlatformIO
CLI, for example, just be sure to update your internal firmwareVersion when you want
to trigger OTA, write that number (N) in version.txt and copy the latest build of the
binary into N.bin using something like

1 cp .pio/build/adafruit_feather_esp32s3/firmware.bin 4.bin

Happy updating :)

5.6.2.3 Hints

• We can think about the security of OTA update from (at least) two perspectives:

– The communication protocol between the device and the site hosting the
firmware. (How easy is it to listen in on that protocol? How easy would it
be to subvert the host site?)

– The physical security of the device itself. (Can the user choose to allow or
disallow firmware updates, perhaps using a sensor attached to the ESP?)

– In each case a good design will make explicit the choices made. (Is the
download direct from GitLab over HTTPS? Or via unsecured HTTP?)

• Remember that to join the uos-other network you need to register your ESP’s
MAC address first via https://www.sheffield.ac.uk/cics/wireless/other

• If you set up your firmware to repeatedly poll a touch sensor and print the
value returned, the Arduino IDE’s Tools>Serial Plotter facility will draw a nice
graph for you.

• If you’re including C code (as opposed to C++) in a .c file and you see a compile
error something like undefined reference ... error: ld returned 1 exit status try
enclosing the references to C entities in your C++ files with extern "C". (Other-
wise the linker mangles the identifier names to avoid conflicts in C++’s object-
oriented namespace, and then can’t find C’s procedural method names.)

• If you see an error like sketch.ino:46:21: error: '_DEFAULT_AP_KEY'was not declared
in this scope you haven’t set up your private.h file correctly.

• Don’t use the WifiGuest network, as this requires sign-in.

5.6.3 The ESP’s Sense of Touch

The ESP32 provides touch sensing capabilities via 10 of its GPIO pins. Each of these
pins can measure capacitative variance incident on electrodes embedded in touch
pads. (Or, if we’re doing things in a hurry, a bit of handy wire connected to the
relevant pin!)

The ESP’s Arduino core defines shortcuts for the GPIO pins that are touch-capable

Hamish Cunningham 127

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(and accessible on your boards) as follows (in file Arduino/hardware/espressif/esp32/
variants/\ feather_esp32/pins_arduino.h):

1 static const uint8_t T0 = 4;
2 static const uint8_t T1 = 0;
3 static const uint8_t T2 = 2;
4 static const uint8_t T3 = 15;
5 static const uint8_t T4 = 13;
6 static const uint8_t T5 = 12;
7 static const uint8_t T6 = 14;
8 static const uint8_t T7 = 27;
9 static const uint8_t T8 = 33;
10 static const uint8_t T9 = 32;

On the S3 Feather, these pins are (somewhat cryptically) broken out and defined (in
file Arduino/hardware/espressif/esp32/variants/\ adafruit_feather_esp32s3/pins_arduino.
h) like this:

1 static const uint8_t T3 = 3;
2 static const uint8_t T4 = 4;
3 static const uint8_t T5 = 5;
4 static const uint8_t T6 = 6;
5 static const uint8_t T8 = 8;
6 static const uint8_t T9 = 9;
7 static const uint8_t T10 = 10;
8 static const uint8_t T11 = 11;
9 static const uint8_t T12 = 12;
10 static const uint8_t T13 = 13;
11 static const uint8_t T14 = 14;

As usual, these capabilities can be accessed in firmware via both an Arduino API
(which is fairly basic) or an ESP IDF API (which is more powerful but more complex).

In Arduino-land, the following will read a value from GPIO 14 (or 6 on the S3) and
store the current value in tval:

1 int tval = touchRead(T6);

(What is GPIO 14 and how do I find it?! See the discussion on pinouts in
sec. 3.3.6.1.)

The values returned from touchRead (or the IDF equivalent touch_pad_read) are not
binary (unlike digitalRead, for example), but represent an analog measure of capac-
itance. To control an OTA process, we probably only need a binary output (“is the
user touching the magic pad or not?”), so your code will need a method for translat-
ing the analog signal to a binary yes/no decision. There is also noise in the signal,
so you may need to discard outlying values or perform averaging of values.

Below some example output from the Arduino IDE serial plotter, with a jumper cable
attached to GPIO pin 14, and Serial.printf("%d\n", touchRead(T6)); in loop(). The
high values (around 75) are where there is no touch happening; the first low range
(around 60) is where I’m touching the outside of the cable (which is covered in
plastic); the second low range (around 15) is where I’m touching the metal end of

128 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

the cable. In all cases there are random spikes of noise!

(The serial plotter is accessible via the IDE’s Tools menu.)

The IDF API for touch sensing is detailed here. Using this API in filtered mode (with
a filter period of 100mS) results in a graph like this (for similar test conditions as
above):

There’s considerably less noise in this version (though note the relatively slow de-
scent to the low state for a pin touch).

Hamish Cunningham 129

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-reference/peripherals/touch_pad.html

6 Machine Learning and Analytics in the Cloud

It is time to step back a little from the device and its local protocols for talking to
sensors and actuators. Belowwe’ll discuss processing your data to produce efficient
prediction models that can run at the edge, and how machine learning plays out in
the IoT. But first, a little digression about AI.

6.1 Is AI about Intelligence?

I was talking to a friend of mine recently who consults for UK universities on e-
learning tech and is writing a book about critical reasoning in the age of algorithmic
intelligence. In the 1980s we studied cognitive science and artificial intelligence (AI)
together, and have watched with interest the recent resurgence in the latter. When
we started out AI was first and foremost a project to understand human intelligence
by modelling it on computer. By contrast, in the twenty twenties AI is about using
applied statistics1 to estimate the probability of a translation fragment, or steer a
self-driving car, or recommend a product to someone who just surfed to the page
of a similar item. It is alsomuch better funded andmuchmore noise is made about
how transformative it may be or become.2 How has this happenned? Were there
1Aren’t deep learning algorithms (and the neural network models that underlie them) more than just
“applied statistics?” Maybe. It is true that neural net architectures are inspired by human brain
biology, but also true that in their typical current form they have little biological plausibility: the
neurons in our heads are more complex, more analogue, more connected. Our brains are also
at the center of hugely complex organisms with vast input ranges and rich feedback loops – and
wants, desires, needs… The neural nets that are used for deep learning are good at generalising
over a large amount of data, and perhaps they are better at doing that than other more obviously
statistical methods. I suspect, however, that the key to the success of their modern applications
are the truly enormous datasets that have been created (by human beings) as part of our rush to
move all types of information persistence and sharing onto the web. They are learning count-based
abstractions over human authored data, rather than modelling the processes by which humans
originate that data in the first place.

2Until around a decade ago my day job was computational infrastructure for the extraction of in-
formation from human language text, which, depending on which funding agency or research lab
was paying the bills, was either down-to-earth software engineering or flight-of-fancy pioneering
AI. There is an argument that the crossover space between literary and technical competence is
what allows the EU to gain competitive advantage and still avoid falling foul of World Trade Or-
ganisation anti-subsidy rules: people like me write the science fiction wrapper that allows states
to fund “research” which might otherwise just be “development.” One unfortunate downside of
this arrangement is that those who have only the literary (or marketing) competence and no real
technical skill or commitment can also sometimes slip in to join the party, with the result that the

131

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

specific breakthroughs? Changes in social and economic context?

My friend and I ended up swapping emails on the following question:

To what extent – if at all – does the claim survive that AI replicates, reproduces or
tells us something useful about human intelligence? Is there an acknowledged
end to that narrative (and if so, when and why?)

I think that what happened is that it became vastly profitable to use applied statis-
tics (aka Machine Learning) to tailor ecommerce websites to recommend products
to customers that other customers have previously bought when shopping for sim-
ilar items. This is the foundation of the business models of Google and Facebook,
for example. In the case of the former, their initial rise to prominence (and ability
to sell advertising) was, of course, based on web search, and this led by various
paths to them becoming key defenders of an open web (in the sense invented
by Berners-Lee). If Google can’t index it, you can’t search it, and someone else
(e.g. Facebook in their partly walled garden, or Apple in theirs) gets to sell the ad-
vertising instead. This polarisation of digital corporate conflict encouraged Google
in providing all sorts of Really Useful Infrastructure, from satnav and maps to calen-
dars and gmail, and to making these offerings all work as well as possible, mostly
for free – or in exchange for your data, of which they amassed a volume for which
the term humungous rapidly became quite inadequate….

And it turns out that if you have a really huge number of examples of human beings
behaving in particular ways (especially if those ways involve a finite set of deci-
sions: which book to buy, or who to include in an email cc. list, or which route to
drive around a traffic jam), then you can get computers to do Really Useful Stuff
in supporting human intelligence. (Not least: get speech recognition to work well
enough that lots of people now want to use it in their homes, on Alexa or Home or
Siri. We’ve got a lovely example of that in this course with the Marvin project from
Chris Greening. For a counter-example of the inflexibility of machine learning in
face of real world data, see Andreas Spiess’ video on reading digits from an electric
meter with an ESP32. YMMV!)

Is this AI, in any sense that the original researchers of that field would have recog-
nised? Probably not, but by now few people remember or care. The amounts of
money being made are vast, and they drive the research agenda and reward the
acolytes who, of course, invent new rafts of terminology to repel the casual boarder
and valourise their knowledge. AI became almost synonymous with Machine Learn-
ing (counting lots of occurrences to inform probabilistic choice); Deep Learning (us-
ing perceptrons and other network representation models, and stacking them) be-
came one of the chief mysteries; “Big Data”(and data analytics) came to be touted

core pre-requisites of science and engineering (evidence, repeatability, transparency) sometimes
become lip-service window dressing, and the corporatisation of university research takes another
step towards the inconsequential mirroring of advertising fantasy. But I digress!

132 Hamish Cunningham

https://www.cmgresearch.com/2020/10/15/diy-alexa.html
https://youtu.be/d_u8c3bu-zg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

as the saviour of high tech UK3; and so on.

The project of understanding human intelligence, then, is now rather eclipsed (at
least in my neck of the woods), by the “let’s get some data and count features and
do prediction” school. Will this trend connect up again with the original project?
Will progress be more substantial now that we have increased our data set sizes by
orders of magnitude? Or is it, as one of the first web browser engineers4 once said,
the fate of our generation to spend our best years working on advertising?!

You have more chance of finding out than I do. Enjoy the chase!

3A decade ago I was luck enough to spend a short year working as ANR Chaire d’Excellence at the
Internet Memory Foundation in Paris with Julien Masanès and colleagues. They used to run the
UK national archives web provision, so for several years if you went to a UK government webpage
that no longer existed you would be forwarded to an archival copy served out of a datacenter
in Amsterdam managed by French sysadmins, partly paid for by EU high tech research budgets.
They worked on early big data infrastructure and analytics using map reduce over HDFS in Hadoop,
sucked down from the web by their custom crawler. Ahead of their time!

4Jamie Zawinski’s website is so beautiful! I want one!

Hamish Cunningham 133

https://www.jwz.org/about.html
images/jwz.png
http://www.agence-nationale-recherche.fr/
https://en.wikipedia.org/wiki/Internet_Memory_Foundation
https://www.jwz.org/
https://www.jwz.org/blog/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

6.2 IoT, Big Data Analytics, and Deep Learning

6.2.1 Machine Learning at the Edge5

Machine Learning has gone through some tremendous growth during the last
decade, mostly driven by progress in training deep neural networks. Their benefits
are impacting more and more applications, used in image classification, object
detection, speech recognition, translations and many more. Wherever data is
being generated, it is likely that machine learning can be used to automate some
tasks. That is why it is important to study machine learning in the context of data
generated by IoT devices.

Currently, machine learning operates under a common computing paradigm. Data
is moved to the cloud (or a centralised server) for data processing. There, data is
labeled and sanitised for quality control, and can be used to train machine learning
models. How thesemodels are used can differ: either continue to upload data to the
cloud for run-time inference (e.g., voice recognition with Alexa, or Siri), or move the
model to the edge to perform inferences close to the data source. Due to privacy
concerns the latter is likely to grow in adoption over the coming year. Here, we are
going to explore the process of training a neural network model and how this can
be made available and used at the edge (on your IoT device).

6.2.1.1 Motivation

Edge computing devices are usually constrained by resources (battery, memory,
computing power, etc.). The amount of computation they do is thus limited, and so
should the machine learning models running at the edge.

If you have ever used the Google personal assistant on your phone, you would
know that this can be triggered by using a keyword “Okay Google.” This relies on a
voice recognition model running continuously on the phone to detect when you are
calling it. Because the CPU is often turned off in idle mode to save battery, on most
devices the keyword spotting task runs on a DSP (Digital Signal Processing) unit.
The DSP consumes just milliWatts (mW) of power, but it is limited in its computing
resources, having just kilobytes (KB) of memory available. So the keyword spotting
model needs to be really small. For instance, the Google assistant voice wake-up
model is just 14 KB. The same resource constraints we find on microcontrollers,
having just KB or memory. We will see in this section how we can build such small
machine learning models and how these can be deployed on small devices.

5This section contributed by Valentin Radu.

134 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

6.2.1.2 Introduction to Machine Learning

Although Machine Learning may see daunting at first, involving a lot of maths and
statistics, some basic concepts can be applied out of the box, without going too
much into details of how these work and how you can develop the optimal training
process for your task. The latter is still an active research area, and even machine
learning specialists cannot agree on the optimal methods. But getting satisfactory
results from your machine learning models can be achieved with default options
and some parameter tuning as we will learn in this section.

We use Machine Learning when the patterns in data are not immediately obvious
to us for how to programme about them. For instance, we know for sure that wa-
ter boils at 100°C, so if we have a reliable thermometer we can programme with a
hard threshold on that value. That is how the common thermostats in boilers and
refrigerators are built. But if we work with noisy data, or the data exhibits patterns
that are too complex for us to spot at a quick glance, it is better to use machine
learning for those tasks. Voice recognition is one example, where direct thresholds
are hard to impose. That is because each time we utter a word or phrase there is
some slight deviation in the tone, pronunciation, opening of the mouth, angle to the
microphone, background noise and many other altering conditions. But machine
learning can extract information from a lot of data examples to automatically focus
on the more meaningful attributes during training. Once such a model is trained,
we can use it in our programmes to make inferences in the real-world without un-
derstanding the complexity of the data ourselves.

There are many different approaches to machine learning. One of the most popu-
lar is deep learning, which is based on a simplified idea of how the human brain
might work. In deep learning, an artificial neural network is trained to model the
relationships between various inputs and outputs. We call it deep because modern
network architectures have many stacked layers of parameters or weights (resem-
bling the connections between brain neurons). Each architecture is designed for
specific tasks and a lot of effort has been going in research over the last few years
to determine the best architectures for each task. For instance, image classification
works well with Convolutional Neural Networks, whereas text translations benefit
from Recurrent Neural Networks.

In the following sections we are going to have a crash course on the most essential
part of deep learning to get you started with training and deploying a machine
learning model. It is by no means complete of what you can do in machine learning,
but we hope this will get you curious and excited about this topic so you will study
it in greater details in other courses.

Hamish Cunningham 135

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

6.2.1.3 Training Deep Neural Networks

Training is the process by which a model learns to produce the correct output for a
given set of inputs. It involves feeding training data through a model and making
small adjustments to it until it makes the most accurate predictions possible.

Training a neural network will require a sizable dataset of plausible examples. It
is important that your model is trained on a distribution of data which is as close
as possible to the real data. Assuming you have a dataset of labeled instances
(annotated with the ground-truth class, for example the uttered word in keyword
spotting), you will assign a portion of that data for training, a smaller fraction for
validation (to evaluate the choices of parameters you make during training) and
finally a test set that you never touch until the very end when you are happy with
your model’s performance on the validation set and you want to determine its final
performance (inference accuracy) on the test set. A common split is 60%:20%:20%,
with the largest set always for training.

During the training process, internal parameters of the network (weights and bi-
ases) are adjusted so that prediction errors on your training set are slowly dimin-
ished. In the forward-pass through the network, the input is transferred at each
layer in the network, all the way to the final layer which produces a data format
that is easily interpretable. The most common output format of a classification
neural network is a vector of activations where each position is associated with a
different class. The vector position with the highest value indicates the winning
class. For instance, if we want to detect a short spoken command (Yes/No), we es-
timate between the following classes “Yes,” “No,” “Silent” and “Unknown” (in that
order in the output vector). If our network produces the following output vector:
[0.9, 0.02, 0.0, 0.08], we will associate the estimation to the class “Yes.” The net-
work is trained by adjusting the weights of the network such that the output will
get as close as possible to [1, 0, 0, 0] if “Yes” is indeed the ground-truth for the
spoken word. This is done by training on many more examples at once, each con-
tributing to the adjustment of weight values. This is repeated several times over
the same training set (epochs). The training stops when the model’s performance
stops improving.

136 Hamish Cunningham

images/demo-net.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

During training we look at twometrics to assess the quality of the training: accuracy
and loss, in particular on samples selected from a validation set (different from the
training set). The loss metric gives us a numerical indication of how far the model is
from the expected answer, and the accuracy indicates the percentage of times the
model chooses the correct class. The aim is to have high accuracy (close to 100%)
and low loss value (close to 0). The training and validation sets should have a fair
distribution of samples from all the classes. Of course, these are task dependent
and for other more complex tasks even getting to 70% accuracy is considered a
very good achievement.

The figure above shows a common training behaviour pattern. Over a number of
epochs (iterations over the training set), the accuracy increases and stabilizes at
a certain value – at which point we say that the model has covered; and the loss
decreases towards its convergence point.

Training neural networks is usually based on try and error in choosing the right train-
ing parameters (or hyperparameters because they are empirically determined). Af-
ter each adjustment, the network training is repeated and metrics visualised until
we get to an acceptable performance. The common hyperparameters adjusted
during training are: learning rate, which indicates how much the values of weights
should be updated at each epoch. A common value to start with is 0.001, network
structure – number of layers and the number of neurons per layer, learning optimi-
sation parameters (such as momentum, etc.), activation functions (sigmoid, tanh,
ReLU), number of training epochs.

Hamish Cunningham 137

images/demo-net.png
images/demo-net.png
images/accuracy-loss.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Once we are happy with the model produced during training, we test it on the test
set to assess its final accuracy. We are then ready for deployment to the device
where inferences will be produced. But there are some more optimisations that can
be performed to make the model run more efficiently on the device.

6.2.1.4 Neural Network Quantization

When deep neural networks first emerged, the hard challenge was getting them
to work at all. Naturally, researchers paid more attention to training methods and
model recognition accuracy, and little on inference performance on hardware. It
was much easier for researchers to work with floating-point numbers, and little
attention was given to other numerical formats.

But as these models become more relevant for many applications, more focus is
now going into making the inference more efficient on the target device. While the
cost of training a model is dominated by the cost of the data engineer time, the
operational cost of running inefficient models on millions of devices dramatically
outbalance the development cost. This is why companies are now so interested in
designing and training the best machine learning models that can run efficiently on
edge computing devices.

Quantization is one popular solution to make neural networks smaller. Instead of
storing the weights of neural networks in the traditional 32-bit floating-point numer-
ical representation, quantization allows us to reduce the number of bits required to
store weights and their activations. Here we will look at quantization, reducing
weights to 8-bit fixed-point representation.

Definition: Quantization is an optimisation that works by reducing the precision
of numbers used to represent the model’s parameters, which by default are 32-bit
floating-point numbers. This results in smaller model size, better portability and
faster computations.

Floating-point representations are essential during the training process for very
small nudges of the weight values based on gradient descent. While that data
representation makes a lot of sense for infinitely small adjustment of the weights in
several passes over the training set, during the inference time an approximated re-
sult for the estimation will likely still determine the same class (although with less
intensity on the last layer of the network). This is possible because deep neural

138 Hamish Cunningham

images/quantization-accuracy.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

networks are generally robust to noise in the data, and quantized values could be
interpreted as such.

The effect of applying quantization is a little bit of loss in accuracy (the approx-
imated result will not always match that produced by the trained model in 32-bit
floating-point representation). But the gains in terms of performance on latency (in-
ference time) and memory bandwidth (on device and in network communication)
are justifiable.

6.2.1.5 The Quantization Method

Neural networks can take a lot of space. The original AlexNet, one of the first deep
neural networks for computer vision, needed about 200 MB in storage space for its
weights.

To take an example, let’s say we want to quantize in 8-bit fixed-point (using integer
values between 0 and 255), the weights of a neural network layer that has values
between -2.5 and 6.5 in 32-bit floating-point representation. We associate the small-
est weight value with the start of the quantized interval (-2.5 will be represented
as 0) and the largest with the maximum value (6.5 will become 255). Anything be-
tween the min and max will be associated with the closest integer value in a linear
mapping of [-2.5, 6.5] to [0, 255]. So with this mapping, 2.4912 will be 127 because
it falls approximately at the middle of the interval.

1 scale = (max(weights) - min(weights)) / 256
2
3 x_code = quant(x) = (x - min(weights)) / scale
4
5 x_reconstruct = dequant(x_code) = min(weights) + x_code * scale

The first benefit is that the storage of the model is reduced by 75% (from 32 bits
down to 8 bits representation of each weight). This can give substantial benefits
if only just for communication cost and flash storage and loading. In the simplest
form of device implementation, the numbers can be converted back to 32-bit repre-
sentation and using the same computation approach in 32-bit precision to perform

Hamish Cunningham 139

images/quantization.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

the inference. But with newer computation frameworks (e.g., TensorFlow Light) the
weights can be used directly in 8-bit representation for integer operations (inputs
are also quantized to 8-bit precision). This will also take advantage of the hardware
support for accelerating to perform the operations in parallel in a single instruc-
tion with SIMD (single instruction multiple data) configurations. With this, 4 times
more 8-bit values are loaded from flash in the same instruction and more values are
stored in a single register and in the cache. If implemented efficiently, theoretically
this can speed up the execution by 4x (performing 4 different 8-bit operations in
the same clock time needed for one 32-bit operation). Not to mention that integer
operations are generally more efficient in hardware, so they consume less energy
compared to floating-point computations.

The advantages of quantization:

• Model size – networks can take upto 4 times less memory in 8-bit representa-
tion vs the 32-bit ones.

• Latency – if implemented correctly in hardware, the models can be a lot faster
also.

• Portability – not all microcontrollers can run 32-bit operations, so quantized
models may be their only option.

In summary, quantizations are great, because if you reduce the model representa-
tion from 32-bit floating-point representations to 8-bit fixed-point representations
you save storage space, memory bandwidth on loads, and even speed up compu-
tations and energy consumption where hardware permits it. And for some devices
(such as 8-bit microcontroller) using quantization may be the only option to run
inference models on them.

6.2.1.6 Keyword spotting exercise

Has a lot of applications to enable the triggering of speech recognition. For in-
stance okay google, or Alexa are keywords that trigger the device to start recording
your commands. Your voiced commands are then sent through the internet to the
cloud for speech recognition, to interpret your commands into computer instruc-
tions. However, knowing when to start recording your commands is important. It
would be too costly to stream continuous recording to the cloud, not to mention pri-
vacy invasive. But running the keyword spotting algorithm locally, on your device
in the home is safe and cost effective. The audio is streamed to the microcontroller
which analyses with small and efficient algorithms to spot when the enabling word
is used.

Step 1 Data collection

For Keyword Spotting we need a dataset aligned to individual words that includes
thousands of examples which are representative of real world audio (e.g., including
background noise).

140 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Step 2: Data Preprocessing

For efficient inference we need to extract features from the audio signal and classify
them using a NN. To do this we convert analog audio signals collected from micro-
phones into digital signals that we then convert into spectrograms which you can
think of as images of sounds.

Step 3: Model Design

In order to deploy a model onto our microcontroller we need it to be very small. We
explore the tradeoffs of such models and just how small they need to be (hint: it’s
tiny)!

Step 4: Training

We will train our model using standard training techniques explored in Course 1 and
will add new power ways of analyzing your training results, confusion matrices. You
will get to train your own keyword spotting model to recognize your choice of words
from our dataset. You will get to explore just how accurate (or not accurate) your
final model can be!

Step 5: Evaluation

We will then explore what it means to have an accurate model and running efficient
on your device.

6.3 COM3505 Week 06 Notes

6.3.1 Learning Objectives

Our objectives this week are to:

• learn about machine learning and the IoT
• make sure we’ve properly understood provisioning and update
• look beyond the device and examine options for cloud-based data logging,
analysis, and remote triggers or control

Note: soon we’re going to ask you to choose project hardware. This year there will
be three main options:

• an ESP32-based ‘smartwatch’ (V3, now including a microphone)
• the unPhone
• a DIY Alexa (Marvin) and/or ESP-Box

(Other options are possible but need to be agreed with me in advance.)

Start thinking about what you would like to play with!

Hamish Cunningham 141

https://www.hackster.io/news/lilygo-s-upgraded-ttgo-t-watch-2020-ditches-the-bulk-puts-display-sensors-and-esp32-on-your-wrist-22cdc19fb9d3
https://www.lilygo.cc/products/t-watch-2020-v3
https://unphone.net/
https://iot.unphone.net/#sec:marvin

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

6.3.2 Assignments

• Create firmware to trigger an IFTTT event. For example, you might use the
ESP’s touch sensing capability to Tweet whenever you tap it three times (handy
for sending secret messages from boring lectures?). (NOTE: this is pretty fid-
dly to get right! There’s an example in the exercises/ tree, but the IFTTT and
Twitter sides need to be set up just so too… If you’re behind with any of the
previous exercises feel free to catch up with them instead, or to experiment
with a cloud service like Adafruit.io or etc.)

• Revise the lectures, reading material and notes for weeks 1 through 7 ready
for the mock exam (in week 9 or 10).

6.3.2.1 Coding Hints

6.3.2.2 Setting up an IFTTT Applet

IFTTT stands for “if this, then that.” We can think of the “this” as an incoming no-
tification (or source), and the “that” as a triggered action (or sink). IFTTT “applets”
accept notifications from diverse sources and trigger actions on diverse sinks. For
example, we can set up an HTTP-based trigger (using their “webhooks” service)
that causes Twitter to tweet a message.

First create an account on ifttt.com and/or download the app for your phone. (You’ll
need a Twitter account too if you want to tweet.) In IFTTT navigate your way to new
applet creation. This varies depends on what app or URL you’re accessing through,
but e.g.:

• in a web browser click on My Applets, then Create
• in a web browser click on Explore, or go to ifttt.com/discover
• in the Android app: click on Get more
• now click on + (Make your own Applets from scratch)

When you’ve found the “create applet” dialogue, it will bring up If +__This__ Then
That. Run through these steps:

• click on the +__This__ (or Add) and select Webhooks
• select Receive a web request
• give an Event name (e.g. my-first-ifttt-trigger) and do Create trigger

This brings up If (hook logo)Then +__That__ (or Add). Now:

• click on the +__That__ (or Add)
• select an action, e.g. Twitter
• select Post a tweet

142 Hamish Cunningham

https://ifttt.com/
https://ifttt.com
https://twitter.com
https://ifttt.com/discover

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• edit the Tweet text message to be meaningful to you; you might want to Tweet
a particular account (by starting the message with @account) to avoid polluting
your Twitter account’s tweet stream; for example:

– @COM3505T the event named "{{EventName}}"occurred on the IFTTT Maker service
. Payload = {{Value1}}; ran at {{OccurredAt}}

• hit Continue; hit Finish to create your applet

We’ve now set up most of what we need on IFTTT, but we need to copy a token to
allow our ESP to authenticate against the server. To do this either

• (on phone) navigate to My services and then Webhooks, then open settings and
click the URL that appears under Account info (something like https://maker.
ifttt.com/use/my-long-key-string)

• (on browser) open ifttt.com/maker_webhooks, and click on Documentation

This will give you a page saying something like:

1 Your key is: my-long-key-string
2 Back to service
3 To trigger an Event
4 Make a POST or GET web request to:
5
6 https://maker.ifttt.com/trigger/{event}/with/key/my-long-key-string
7 ...
8 You can also try it with curl from a command line.
9
10 curl -X POST https://maker.ifttt.com/trigger/{event}/with/key/my-long-

key-string

Replace {event} with your event name, e.g. my-first-ifttt-trigger and click Test it,
or copy the curl statement and try it from the command line.

NOTE: IFTTT services sometimes have quite a high latency, and this seems partic-
ularly true for Twitter. You might have to wait 10 minutes or more for the tweet to
appear in public! (You should be able to test the service without waiting for that to
happen though, as the POST request will return a Congratulations! You've fired the
{event} event message if it succeeds. Also check the Webhook>Settings>Activity page
to see if Twitter accepted the trigger or if some other problem may have occured.
YMMV!

Make a note of your key, and the URL that the service lives at. (Following the
style of previous weeks’ exercises, you could put the key in your private.h file, e.g.:
#define _IFTTT_KEY "j7sdkfsdfkjsdflk77sss".

6.3.2.3 Accessing the IFTTT Applet from Firmware

Now that we have a working service, we just need to get the ESP32 to call it over
HTTP(S). This example from the ESP32 Arduino core can be adapted to talk to IFTTT

Hamish Cunningham 143

https://ifttt.com/maker_webhooks
https://github.com/espressif/arduino-esp32/blob/master/libraries/HTTPClient/examples/BasicHttpsClient/BasicHttpsClient.ino

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

with a little work. If we define a doPOST method (based on the example) that takes
a URL and a JSON fragment in IFTTT format, we can do the service trigger job like
this:

1 void doPOST(String url, String body) {
2 // ...
3 }
4
5 void iftttTweet(String messageDetails) {
6 String url(
7 "https://maker.ifttt.com/trigger/{event}/with/key/" _IFTTT_KEY
8);
9 doPOST(url, messageDetails);
10 }

(You need to define the _IFTTT_KEY in your private.h file in the normal way.)

Good luck!

The course GitLab repository contains exercises/IFTTTThing, a model solution to the
exercise. (Note: this code can be controlled by an ultrasonic sensor attached to
pins A0 and A2 like this. By default this is turned off; define USE_ULTRASONICS to turn
it on.)

6.4 Further Reading

Pete Warden and Daniel Situnayake, TinyML: Machine Learning with TensorFlow Lite
on Arduino and Ultra-Low-Power Microcontrollers, O’Reilly Media, 2019 (Warden and
Situnayake 2019).

144 Hamish Cunningham

images/ifttt.jpg

7 Scheduling Tasks, Gestating New Devices

This chapter begins by introducing techniques for time sharing on microcontrollers,
and for minimising power consumption. We then look at what the process of IoT
device development entails, using the example of Sheffield’s unPhone IoT platform.
(For details of how to program and unPhone, see Chapter 11.)

The practical work this week is to begin the first lab assessment – for details see
Blackboard.

7.1 Timers, Interrupts, Tasks, Events

Multiprocessing (Tanenbaum and Bos 2015) has become such a ubiquitous feature
of modern computing that we take it for granted. A quick sneak peak at my desk-
top’s promiscuous innards (“ps ax |wc - l” for the curious) reveals no less than three
hundred separate processes all “running” at the same time: what profligacy! My
desktop doesn’t contain 300 CPUs, of course, or even that number of cores, but the
miracles of multi-GHz multicore processors, super fast RAM, paging, context switch-
ing and scheduling make it seem as if it does, and that makes the job of anyone
trying to program the beast enormously easier than it would otherwise be. The
ESP32, by way of contrast, has two diddy little cores running at a couple of hundred
MHz, and most of one core is needed to cope with protocols like WiFi or Bluetooth.
This chapter looks at four strategies that we can adopt to cope with this somewhat
constrained environment:

1. time slicing
2. interrupts
3. timers
4. FreeRTOS tasks

Let’s take these in turn.

7.1.1 Time Slicing

We’ll take the simplest approach first. This works, but doesn’t extend well as com-
plexity increases.

145

https://unphone.net/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

When our microcontroller has only a few simple tasks to perform, which happen
in a linear sequence and don’t have any strict timing requirements, we can simply
program these as a series of imperative statements, e.g.

1 void loop() {
2 readSensors(&sensorData);
3 postReadings(sensorData);
4 Serial.println(ESP.getFreeHeap());
5 }

Job done. Hmmm, but maybe the memory print-outs are happening so quickly
they’re difficult to read, or maybe the expensive operation of talking to WiFi and
cloud HTTP server is draining the battery too quickly, and we only need readings
every few seconds. What to do? In code we’ve seen in previous examples, we
might add a delay, e.g.:

1 ...
2 postReadings(sensorData);
3 delay(2000); // wait a couple of seconds
4 Serial.println(ESP.getFreeHeap());
5 ...

That works. Hmmm, but maybe we also need to show a warning signal if something
in the sensor readings looks problematic.1 Shall we split that delay and do it in the
middle? What if we only want to do one of the actions every fourth time through?
Or what if we need to do some housekeeping if we get a control signal of some sort,
but otherwise speed on through?

Flow of control can quickly become complex and error-prone as we add more and
more cases, and the interaction with delay (during which the core we’re running
on does nothing) is often tricky to manage (not to mention an inefficient use of
hardware resource). A simple way to improve things is to add a loop counter, and
to trigger events in slices based on this counter. For example:

1 int loopCounter = 0;
2 const int LOOP_ROLLOVER = 100000; // how many loops per action slice
3 const int TICK_MONITOR = 0; // when to take sensor readings
4 const int TICK_POST_READINGS = 200; // when to POST data to the cloud
5 const int TICK_HEAP_DEBUG = 100000; // do a memory diagnostic
6
7 void loop() {

1One of the systems we built was an aquaponic green wall (the Aquamosaic) at Gripple’s Riverside
Works factory in Carbrook. The factory floor was covered in expensivemachines for making various
types of complicated metal objects, and our wall was covered in around a hundred water flow
control solenoids (repurposed from washing machine spare parts). To drive water flow to the top
of the wall, some 7 meters above floor level, a large high pressure pump was fitted to the pipework.
When it worked, it was poetry; but if any of the hundreds of pipes and fittings sprang a leak, the
factory got wet, and it quickly became obvious that our hosts, though gracious in the extreme,
were smiling a little more fixedly than was their norm. We needed to trap leak events very rapidly,
and turn off the pump, so we added a pressure sensor to the plumbing, and a current monitor and
433MHz relay to the mains supply, and wrote some remedial code. Factory dry :)

146 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8 if(loopCounter == TICK_MONITOR) { // monitor levels
9 readSensors(&sensorData);
10 } else if(loopCounter == TICK_POST_READINGS) {
11 ...
12 } else if(loopCounter++ == LOOP_ROLLOVER) {
13 loopCounter = 0;
14 }
15 }

Various arrangements using additional counters can be used to organise different
frequencies for different tasks, and the size of the action slices can be adjusted to
change the overall duration of each sequence.

This approach works reasonably well, until we start to need to respond urgently to
particular events, or perform certain tasks at particular times. The next section
looks at solutions to that type of requirement.

7.1.2 Interrupts and Timers

So far we have relied on our firmware code to deal with all aspects of scheduling,
monitoring and responding. The hardware we’re running on, however, provides
two facilities that can lead us to much more powerful solutions to these types of
problem:

• Timers are, as their name suggests, a means to schedule some code to run af-
ter a certain amount of time has elapsed. (On the ESP32 this time is measured
using the 80MHz internal clock.)

• Interrupts trigger short routines whenever some particular condition is met,
e.g. a GPIO pin changing state (in which case we see an external interrupt)
or a timer triggering (or a timer interrupt).

The programming model for interrupts is to define very short and fast procedures
called Interrupt Service Routines (ISRs), and to register these routines as callbacks
from the timer or external state change that we wish to respond to. ISRs impose
some additional constraints on your code, being normally written to avoid being
interrupted themselves and to avoid running for more than some tiny number of
cycles. Therefore they use mutual exclusion resource locking (or mutex locking),
volatile variables (which the compiler will not attempt to optimise) and forced res-
idence in fast RAM (using the IRAM_ATTR flag). Due to these constraints an ISR will
rarely do any complex processing itself, but just push an event description into
a queue which is then drained from some other process (or task – see also next
section).

The exercises tree contains an example called TimingThing that responds to external
interrupts from a push-button switch connected between GPIO 14 and ground. It
contains two methods of note for this discussion:

Hamish Cunningham 147

https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• gpio_isr_handler, which is an ISR that toggles the state of a boolean used to
control flashing of an LED

• eventsSetup, which configures the GPIO pin, loads the interrupt service and reg-
isters gpio_isr_handler to be triggered when the pin goes LOW (or when we see
a “falling edge” or “negative edge” change on the pin)

(Note that these methods use the IDF API to configure the relevant GPIO pins and
attach the ISR handler.)

1 uint8_t SWITCH_PIN = 14, LED_PIN = 32; // which GPIO we're using
2 volatile bool flashTheLED = false; // control flag for LED flasher
3 ...
4 // gpio interrupt events
5 static void IRAM_ATTR gpio_isr_handler(void *arg) { // switch press

handler
6 uint32_t gpio_num = (uint32_t) arg; // data from ISR service; not

used
7 flashTheLED = ! flashTheLED; // toggle the state
8 }
9 static void eventsSetup() { // call this from

setup()
10 // configure the switch pin (INPUT, falling edge interrupts)
11 gpio_config_t io_conf; // params for switches
12 io_conf.mode = GPIO_MODE_INPUT; // set as input mode
13 io_conf.pin_bit_mask = 1ULL << SWITCH_PIN; // bit mask of pin(s)

to set
14 io_conf.pull_up_en = GPIO_PULLUP_DISABLE; // disable pull-up

mode
15 io_conf.pull_down_en = GPIO_PULLDOWN_DISABLE; // disable pull-down

mode
16 io_conf.intr_type = GPIO_INTR_NEGEDGE; // interrupt on

falling edge
17 (void) gpio_config(&io_conf); // do the

configuration
18
19 // install gpio isr service & hook up isr handlers
20 gpio_install_isr_service(0); // prints an error if already there;

ignore!
21 gpio_isr_handler_add(// attach the handler
22 (gpio_num_t) SWITCH_PIN , gpio_isr_handler , (void *) SWITCH_PIN
23);
24 }
25 ...
26 if(flashTheLED) ...write HIGH on the LED pin, wait a little, write

LOW...

The board that the example runs with looks like this:

148 Hamish Cunningham

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html
images/bias-resistor.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Here:

• Red is 3V, white is GND, blue is GPIO 14 and the yellow connected to the ESP32
is to GPIO 32.

• The LED cathode (shorter, -ve side lead) is in the GND rail, with a 180R resistor
in series from its anode to GPIO 32.

• The switch is between the GND rail and GPIO 14, with the 10k resistor also
connected from between the switch and GPIO14 to V+ (the 3V rail).

(Note the 10k pull-up from the sensing side of the switch to V+; this is to prevent
phantom reads when using the interrupt-driven code.)

Previous examples we’ve looked at have polled the switch (or other sensor) reg-
ularly during execution, looking for a state change. Often it is possible to miss a
change if it happens during some other part of the execution path. The approach
described here, although a little more complex at first sight, has the significant ad-
vantage of using the hardware to monitor and trigger a response to changes, and
is the preferred method for any non-trivial system.

Note: the TimingThing example still uses delay to regulate the flashing LED. The
ideal would be to use a timer instead, perhaps like this one.

7.1.3 FreeRTOS Tasks

In section 2.3.2.2 I wrote that

Hamish Cunningham 149

images/bias-resistor.jpg
images/bias-resistor.jpg
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/TimingThing/
https://github.com/espressif/arduino-esp32/blob/master/libraries/ESP32/examples/Timer/RepeatTimer/RepeatTimer.ino

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Another important facility that we can access via the Espressif SDK is FreeR-
TOS, an open source real time ‘operating system’. FreeRTOS provides an ab-
straction for task initialisation, spawning and management, including timer
interrupts and the ability to achieve a form of multiprocessing using priority-
based scheduling. The ESP32 is a dual core chip (although the memory space
is shared across both cores, i.e. it provides symmetric multiprocessing, or SMP).
FreeRTOS allows us to exploit situations where several tasks can run simulta-
neously, or where several tasks can be interleaved on a single core to emulate
multithreading.

In order to do this FreeRTOS tasks are allocated their own processing context (in-
cluding execution stack) and a scheduler is responsible for swapping them in and
out according to priority. (Note that the usual case for FreeRTOS ports is single core
MCU, and that therefore the ESP32 port has made a number of changes to support
dual core operation.)

For example, sketch.ino in the MicML example2 in the exercises tree forwards data
from the I2S bus to a server (over WiFi) whenever it is available from a microphone
board. The code uses a FreeRTOS task containing an infinite loop that continually
waits for a notification from a parallel I2S reader task (in I2SSampler::addSample in
I2SSampler.cpp, via xTaskNotify):

1 // write samples to our server
2 void i2sWriterTask(void *param) {
3 I2SSampler *sampler = (I2SSampler *) param;
4
5 while (true) { // wait for some samples to save
6 uint32_t ulNotificationValue =
7 ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(100));
8 if (ulNotificationValue > 0) {
9 // read the i2s buffer, post to server ...
10 }
11 }
12 }
13 ...
14 void setup() {
15 ...
16 // set up i2s to read from our microphone
17 i2s_sampler = new I2SSampler();
18
19 // set up the i2s sample writer task
20 TaskHandle_t writer_task_handle;
21 xTaskCreate(
22 i2sWriterTask , "I2S Writer Task", 4096,
23 i2s_sampler , 1, &writer_task_handle
24);
25
26 // start sampling from i2s device
27 i2s_sampler ->start(
28 I2S_NUM_1 , i2s_pins , i2s_config ,

2Code from Chris Greening and others: thanks folks!

150 Hamish Cunningham

https://www.freertos.org/
https://www.freertos.org/taskandcr.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/freertos-smp.html
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

29 32768, writer_task_handle
30);
31 ...
32 }

Having set up these two tasks, there is nothing else to do, as FreeRTOS schedules
all the processing without further intervention!

1 void loop() {
2 // nothing to do here!
3 // all driven by the i2s peripheral reading samples
4 }

This has been a whistle-stop tour of a number of complex and powerful tools in the
MCU programmers’ armoury. It is well worth reading up on background sources and
experimenting with the IDF, Arduino and FreeRTOS examples to get a better sense
of how this all hangs together. Best of luck!

7.2 IoT Device Gestation: Creating the unPhone

Over the last half a dozen years or so, myself and colleagues have worked on control
and monitoring systems for a sustainable urban food growing technology called
aquaponics (Hamish Cunningham and Kotzen 2015; Rakcozy 2011). This is pretty
close to the lowest environmental impact footprint that intensive agriculture can
manage, pairing a closed-loop recirculating aquaculture system with hydroponic
vegetables fed via naturally occuring nitrifying bacteria. No pesticides, no growth
hormones, motherhood, apple pie, yada yada yada.

The catch? Complexity. We have three quite different types of organism (fish,
plants, bacteria) all sharing an ecosystem; to maintain conditions favourable to all
three whilst simultaneously harvesting food is quite the balancing act.

What to do?

In contrast to hydroponics, the growing of vegetables in dissolved fertilisers,
aquaponics lacks mature control, monitoring, data sharing and analytics systems
to support it. Our research programme has been to try and contribute IoT-based
systems in this space, to chip away at the complexity problem by partial automa-
tion, knowledge sharing, the wisdom of crowds and the frequent wearing of silly
hats in bright colours. To test out the approach, we first built a little aquaponics
system in an unused alcove on campus:

Hamish Cunningham 151

images/concourse-ponics.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(System design followed that from the FAO given in (Somerville et al. 2014).)

Soon afterward Richard Nicolle of Garden Up cornered me in the pub and beat me
repeatedly with a packet of cheese and onion crisps until I just couldn’t bear the
pain any longer and agreed to pitch an aquaponic green wall idea to Gripple’s spe-
cial projects manager Gordon Macrae (who’s a bit like an SAS Colonel only based in
a secret headquarters underneath Sheffield’s River Don). Gareth Coleman couldn’t
resist an opportunity to muck about with insanely complicated bleeding-edge tech-
nology, and we managed to convince Dave Hartley of ShowKoi that we needed at
least one real engineer on the team to stop people laughing (too loudly) at us. The
die was cast, and a year later we had transformed this:

into this:

152 Hamish Cunningham

images/concourse-ponics.jpg
images/concourse-ponics.jpg
https://gardenup.org/
https://gripple.com
https://twitter.com/gdmacrae
https://bitfixit.co.uk/
https://www.showkoi.co.uk/
images/wall-one-dimensions.png
images/aquamosaic-01.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Hamish Cunningham 153

images/aquamosaic-01.jpg
images/aquamosaic-01.jpg
images/aquamosaic-02.jpg
images/aquamosaic-03.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(We had a lot of help from Gripple’s Ninja Plumber contractors too. They’re a bit like
Robert de Niro’s character in the film Brazil, only better with pipes and fittings.)

Eureka!

Except: when we did the figures, it turned out that only the Queen of England would
actually be able to afford one. Drawing board, back to, etc. :(

More recently Gareth installed our concourse system at Heeley City Farm, col-
leagues including Jill Edmondson and Tony Ryan helped us develop a next iteration
of the system in the AWEC controlled environment center, and in 2020-21 as part
of the Institute of Sustainable Food we built a new minifarm at Regather.

Anyhow, I’m getting ahead of myself. Scroll back half a decade, and as is nor-
mal for the first prototypes of a new device, we initially relied on breadboards and
jumper cables to hook together the various different sensors, actuators and micro-
controllers that made up the control and monitoring systems. As time went on and
we added more and more functions to our rigs, we started to develop an attractive
line in spaghetti wiring looms!

154 Hamish Cunningham

images/aquamosaic-03.png
images/aquamosaic-03.png
https://www.heeleyfarm.org.uk/
https://www.sheffield.ac.uk/biosciences/people/academic-staff/jill-edmondson
https://www.sheffield.ac.uk/chemistry/people/academic/anthony-j-ryan-obe
https://www.sheffield.ac.uk/awec
https://www.sheffield.ac.uk/sustainable-food
https://regather.net/
images/before-unphone.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Reliability? Hmmm. Breathing on it was usually ok, but anythingmore violent would
run the risk of dislodging a connection, and even when everything was plugged to-
gether just right, the presence of several high frequency bus signals on unshielded
wires waving in the breeze was just asking for trouble. That meant lots of work for
Gareth and Gee, slaving over a hot oscilloscope at all hours:

At the time, we were building a lot of different devices for various projects, and we
could see the advantages in combining as many functions as possible under one
roof. Martin Mayfield and Steve Jubb were running a project called Urban Flows
which, amongst other things, was interested in measuring the life cycle impacts of
the Sheffield food system, and agreed to fund version one of a new IoT device.

Hamish Cunningham 155

images/before-unphone.png
images/before-unphone.png
images/oscilloscope-01.png
https://www.sheffield.ac.uk/civil/people/academic/martin-mayfield
https://www.sheffield.ac.uk/civil/people/technical/steve-jubb
https://urbanflows.ac.uk/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Soon after, with lots of help from Pimoroni, the unphone went from a thought ex-
periment on my office whiteboard…

…to a prototype in a neat grey case:

156 Hamish Cunningham

https://pimoroni.com/
https://unphone.net
images/unphone-whiteboard.jpg
images/early-unphone.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

It soon became clear that there was a wider need for something along the lines
of the unphone as an IoT development platform. By the time the Pandemonium
arrived, we were at hardware iteration 6-and-a-bit (or, as Pimoroni’s Jon Williamson
insists on calling it, “7”), and all was set fair for world domination, ushering in the
socialist paradise and finally putting to bed all those nasty rumours about computer
scientists being a bunch of useless no-marks, nerds and geeks who should on no
account ever be invited to parties.

As with many things, C19 wreaked it’s havoc on our schedules, and it was another
two years before we reached a version – unPhone9 – that we are happy to release
upon an unsuspecting world; see Chapter 11 for more details of the current state
of the device.

Quoting from unphone.net:

Developing for the Internet of Things is a bit like trying to change a light bulb
in the dark while standing on a three-legged chair with your shoelaces tied
together. By the time you’ve configured your development environment, as-
sembled the libraries your hardware demands, fixed the compatibility issues
and figured out how to burn new firmware without bricking your circuit board
you’re all ready to discover that the shiney new networking function that you
bought the board for in the first place doesn’t actually work with your local wifi
access point and that the device has less memory space than Babbage and
Lovelace’s difference engine.

Hey ho.

The unPhone is an IoT development platform from the University of Sheffield,

Hamish Cunningham 157

images/early-unphone.png
images/early-unphone.png
https://unphone.net/
https://shop.pimoroni.com/blogs/help/7283658-who-is-pimoroni
https://unphone.net/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Pimoroni and BitFIXit that builds on one of the easiest and most popular net-
worked microcontrollers available (the ESP32), and adds:

• an LCD touchscreen for easy debugging and UI creation
• LoRaWAN free radio communication (supplementing the ESP’s excellent
wifi and bluetooth support)

• LiPo battery management and USB charging
• a vibration motor for notifications
• IR LEDs for surreptitiously switching the cafe TV off
• an accelerometer and compass
• an SD card reader
• power and reset buttons
• a robust case
• an expander board that supports three featherwing sockets and a proto-
typing area

• open source firmware compatible with the Arduino IDE and Espressif’s IDF
development framework

• all the features of Adafruit’s Feather Huzzah ESP32

Untie your shoelaces and let’s get cracking :-)

The externally accessible components are arranged like this:

158 Hamish Cunningham

images/unphone-top.png
images/unphone-underside.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

And other components are attached via an expander cable and daughter board:

Later versions also have three pushbutton switches across the lower front of the
case. Here’s one running an infra-red control test from the IR LEDs to a sensor
mounted on another unit:

Hamish Cunningham 159

images/unphone-underside.png
images/unphone-underside.png
images/unphone-in-case-with-ffc.jpg
images/unphone-buttons-ir.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The daughter board accepts three feather sockets and has a small matrixboard-style
prototyping area:

160 Hamish Cunningham

images/unphone-buttons-ir.jpg
images/unphone-buttons-ir.jpg
images/unphone-expander.jpg
images/unphone-expander-with-ariel.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

The expander can be housed in a 3D-printed case extender of varying thickness
(designed by Peter Hemmins; thanks Pete!):

Hamish Cunningham 161

images/unphone-expander-with-ariel.jpg
images/unphone-expander-with-ariel.jpg
images/unphone-expander-case.png
images/unphone-expander-case-02.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Robots, TV remotes, battleship games, air quality monitors, dawn simulator alarms:
the beast has proven quite versatile!

162 Hamish Cunningham

images/unphone-expander-case-02.jpg
images/unphone-expander-case-02.jpg
images/unphone-tv-remote.png
images/unphone-robot-moving.gif

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Hamish Cunningham 163

images/unphone-robot-moving.gif
images/unphone-robot-moving.gif
images/unphone-alarm.png
images/unphone-alarm-02.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

7.2.1 Steps in Device Creation

The rest of this section returns, belatedly, to the point, and looks at the various
stages that the prototype unphone device made its way through on the way to
(almost!) maturity, and attempts to draw out a few lessons for IoT device gestation
in general.

A typical IoT device creation process goes through these steps:

• breadboarding
• stripboarding
• testing testing testing!
• proof of concept? demand?
• creating a circuit board
• bringing up the board: if chip X doesn’t work, reach for the scope…
• writing a firmware test harness
• applications time!

From circuit to board:

• developing schematics (in Eagle, or KiCAD)
• building on Adafruit’s open hardware designs & Gareth & Pimoroni’s expertise

Logical level circuit diagrams

164 Hamish Cunningham

images/unphone-alarm-02.png
images/unphone-alarm-02.png
images/schematic.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

PCB (printed circuit board) routing diagrams

Then send away for PCBs and a stencil, and… bung it in the pick’n’place machine:

Hamish Cunningham 165

images/schematic.png
images/schematic.png
images/pcb-design.png
images/pie-factory-01.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Load in a bunch of rolls of components:

166 Hamish Cunningham

images/pie-factory-01.jpg
images/pie-factory-01.jpg
images/pick-n-place.png
images/loading-pick-n-place.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Applying solder paste to the bare board:

Getting it right: 6¼ hardware iterations:

Hamish Cunningham 167

images/loading-pick-n-place.png
images/loading-pick-n-place.png
images/solder-paste.png
images/unphone-versions.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

From left to right:

• first pcb version (buttons are for programming and reset),
• second with auto-programming,
• third with new expander to handle the SPI CS (chip selects) and etc. (e.g.
backlight),

• and version 4 with more minor fixes; this was the first COM3505 version

(Versions 5 and 6 removed the mic and added front-of-case buttons; we don’t talk
about why we needed version 6¼, at least not in public.)

It’s a thing! (31st Jan to 8th Nov 2018: 9 months from proposal to delivery!)

168 Hamish Cunningham

images/unphone-versions.jpg
images/unphone-versions.jpg
images/an-unphone-thing.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

7.2.2 Some Lessons

Bringing up a new board is, in a word, messy! When things don’t work as expected
there’s no knowing whether it is the hardware or the code that’s at fault. This means
lots of painful debugging with an oscilloscope! Allow plenty of time for this step!

It is easy to hit unintended consequences. At some point we were getting low on IO
pins to connect peripherals to, and one of us said “I know, let’s add an IO expander!”
This little chip adds lots of connectivity by shunting the chip select lines of the
various modules onto an expander chip (TCA9555, on I2C). Unfortunately, it also
means that none of the libraries work any more, as then need an extra step when
writing to the device. The libraries use use digitalWrite(PIN, HIGH) internally, but
we need to activate the expander to do chip select toggling first. So now we have
an IOExpander class that we inject into libs:

1 #include "IOExpander.h"
2 #define digitalWrite IOExpander::digitalWrite
3 #define pinMode IOExpander::pinMode
4 #define digitalRead IOExpander::digitalRead

The overridden methods use bit 2 of the PIN int to represent an unPhone expander

Hamish Cunningham 169

images/an-unphone-thing.jpg
images/an-unphone-thing.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

pin (why not the top bit? casts from uint to int make it -ve!):

1 void IOExpander::digitalWrite(uint8_t pin, uint8_t value) {
2 if(pin & 0x40) {
3 pin &= 0b10111111; // mask out the high bit
4 IOExpander::writeRegisterWord(0x02, new_output_states); // trigger

9555
5 ...

Summarising the good bits and the not so good bits:

• +ves

– from original idea to working system took less than a year
– budget was tiny in comparison to traditional product development
– we learned a lot! (hopefully we’re managing to share some of that with
you!)

• -ves

– lots of unforeseen hiccups and unintended consequences
– the pace of change is challenging: “don’t look now, your synthesiser has
just gone out of date”

– “always start from a known good”… um, except when there isn’t one?!
– the more libraries you use, the more unstable your development environ-
ment

Overall, the process of creating a new IoT device is still a pretty big job, but it is
undeniably shrinking as time goes on. What do you want to create?!

7.3 COM3505 Week 07 Notes

This week we publish “Lab” Asssessment 1, which you will have until the start of
the Easter break to complete. For details see your gitlab repo under “LA1.”

7.4 Futher Reading

• Adafruit/DigiKey’s “All the IoT” series has lots of useful background on IoT con-
nectivity options. See also the Adafruit copies:

– episode 1, transports
– episode 2, protocols
– episode 3, services
– episode 4, Adafruit.io
– episode 5, security

170 Hamish Cunningham

https://www.digikey.com/en/resources/iot-resource-center/videos
https://learn.adafruit.com/alltheiot-transports?view=all
https://learn.adafruit.com/alltheiot-protocols?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-three-services?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-five-the-s-in-iot-is-for-security?view=all

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

– episode 6 is not so interesting, as it was based on a now discontinued
DiGiKey product

• This article on IoT hubs/gateways is interesting on how themarket has changed
in the last couple of years: staceyoniot.com.

• If you’re working on your own machine and like neither the IDE nor the IDF,
you might try the Arduino CLI.

Hamish Cunningham 171

https://learn.adafruit.com/digikey-iot-studio-smart-home
https://staceyoniot.com/heres-why-smart-home-hubs-seem-to-be-dying-a-slow-painful-death/
https://www.linuxjournal.com/content/arduino-command-line-break-free-gui-git-and-vim

8 Applications

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies; the other way is to make it so
complicated that there are no obvious deficiencies. (C.A.R. Hoare)

If you try to make something beautiful, it is often ugly. If you try to make
something useful, it is often beautiful. (Oscar Wilde)

Welcome to the end of the beginning: from now on we’re in project territory. The
most important part of the rest of the course is to design, build, test and document
an IoT device. Most often this involves both hardware and firmware (and sometimes
cloud-based software), but it is also possible to do a good project that is only in
firmware.

The first half of this chapter does three things:

• takes a whistle-stop tour of various applications of the IoT
• introduces the various projects that students can undertake in the second part
of the course

• details the safety hazards of using Lithium Polymer batteries, and how to avoid
them

The rest of the chapter then details project options.1

TODO

(NOTE: in 2024 the chip shortage has eased quite a bit, and we should be able to
offer 3 default choices based on the LilyGO Watch, DIY Alexa (Marvin) and unPhone-
based projects. There are also options that only use the ESP32S3 featherwing which
is supplied in week 1. Other possibilities are included below for reference.)

8.1 Beep my Earing Whenever I Start Sounding Like a Donkey

Applications of IoT technology aremany and varied. Existing products are as diverse
as RFID warehousing and logistics trackers, exercise products such as Fitbit or the
Polar heart rate monitor, the Good Night Lamp or the NEST thermostat. DIY projects
are similarly numerous and diverse. For example:
1Many of the project circuits and their descriptions were developed by Gareth Coleman.

173

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• An automatic hen-house door (Monk 2013) which lets the critters out in the
morning and then shuts them in (safe from foxes!) at the end of the day.

• A temperature monitoring web server with remote control of household appli-
ances (Thakur 2016).

• A low moisture alerts system for keeping track of indoor plant watering needs
(Schwartz 2016b) or wifi alarm (Schwartz 2016a).

• An umbrella whose handle lights up when you’re leaving the house and it is
raining outside (McEwen and Cassimally 2013).

• An autonomous toy car robot that navigates with GPS (Kurniawan 2016).
• An automatic garden watering system (Banzi and Shiloh 2014a).
• A barcode scanner for keeping track of your shopping (Doukas 2012).

It sometimes feels easier to define what isn’t IoT, than what is – particulary as
the marketing departments of most major companies decided somewhere in the
middle tennies that everything lying around in their product portfolio up to and
including that old COBOL point-of-sale system that last sold in the late 1850s is
actually a blazingly relevant IoT innovation that will transform your life, or at least
help trim off that irritating positive bank balance that you’ve been worrying about.
If a device…

• …is net-connected, whether permanently or intermittently,
• based on a microcontroller,
• and uses sensors and actuators to monitor and respond to external events…

…then it probably qualifies for inclusion in the IoT. (If it is permanently powered,
talks to the outside world via teletype or Morse code, and deploys enough compute
power to run the entire world’s automation capability in the 1980s, it may not be.)

8.2 Projects: Design, Build, Document

The course project is both a great opportunity to learn about the entirety of an IoT
device and the main way that we assess the depth of your learning. (See chapter
1 for more details of the threshold and grading assessment method in use from
2021.) The latter point means that you should pay a good deal of attention to doc-
umentation and presentation of your work: functionality is important, but the best
projects will be those that combine great functionality with great documentation,
both of the device itself and of the process of its creation.

You now need to start:

• designing
• assembling any extra hardware that is needed
• working on the firmware
• thinking about how you will present the project (via your gitlab, documentation
and a 60 second video) in week 12

174 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

As always you should keep checking in and pushing to your repository as you iterate
through design, development, testing and documentation phases.

8.2.1 Possible Projects

There are many possible projects, some using additional hardware, some just using
the ESP32 on its own. We supply a variety of add-on hardware for you to use in
project work, but if you prefer it is also possible to do a project using just the ESP32
itself, for example:

• binary diff for incremental OTA
• power usage analysis and off-grid modelling
• bed-time tracking and cloud-based data visualisation

Projects using additional hardware:

• DIY Alexa: a mic-and-speaker project with cloud-based voice recognition
• lots of unphone-based projects (using the UI, IR LEDs, LoRa radio, SD card,
accelerometer, expander board, or etc.)

• Robocar, a small motorised platform
• thermal imaging with the thermal camera featherwing
• intrusion detection or etc. using a PIR sensor
• location-based systems (e.g. a panic button for summoning help) using a GPS
featherwing

• WaterElf version 9, a sustainable agriculture control and monitoring board
• a music player, and/or musical instrument
• a spoken note-taker with cloud ASR
• a dawn simulator alarm clock
• TV-b-gone, or TV remote control, using IR LEDs and (probably) an IR sensor to
test the operation of the LEDs

• a ShakeMe UI: using an accelerometer for gesture-based control
• persistence of vision using an LED strip (advanced!)
• air quality monitoring (not available in 2022 unless by special arrangement)
• text messaging without Telcos: basic communications over LoRaWAN
• a predictive typing UI using a touchscreen
• an ESP32 smartwatch (though you’ll need to supply your own if doing this in

2022)

• A.N. Other (just ask first!)

Below we detail hardware build issues, relevant libraries and example code etc.,
after a look at the LiPo batteries used by some project options.

Hamish Cunningham 175

https://www.adafruit.com/product/3622

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

8.3 LiPo Safety

8.3.1 What are Lithium Polymer Batteries?

Lithium Polymer (or LiPo) cells are one of the most effective commercially available
rechargeable batteries, having high energy and power density. These batteries are
used in all manner of mobile applications and are particularly popular with remote
control (RC) hobbyists.

If needed you will be given a LiPo battery as part of the project hardware for
COM3505. The battery is potentially dangerous if damaged, or the electronics
connected to the battery are damaged, or the battery is connected to inappropriate
hardware. If in doubt, stop work and ask for help!

8.3.2 What are the Dangers?

Although these cells are very useful, they can be dangerous when mistreated or
misused. There are three main causes of cell failure: puncture, over-heating and
over-charging. If the battery fails as a result of any of these, hazardous electrolyte
leakage, fire or explosions may occur.

The rate of transfer of energy within the battery is strongly linked to its internal
heat; when over-heated the cell’s long term performance will degrade, more energy
is released and the battery gets hotter, creating a dangerous feedback loop. If this
continues the electrolyte will vaporise and cause the battery to expand, which may
lead to fire or even an explosion.

This same effect can be caused by over-charging the battery, or in some cases even
just leaving it charged in the wrong circumstances. Henry (one of our previous
teaching assistants on the course) used to fly an RC helicopter that ran off a multi-
cell LiPo pack. Having forgotten to discharge it, it was left in a container in his shed.
Many months later the cell exploded in a ball of flame nearly burning down the
shed!

The sensitive chemistry of the batteries can also lead to fire if the battery gets
punctured and vents into the air.

8.3.3 Avoiding Problems

ALWAYS take the following precautions when using LiPos in COM3505:

• Only use the battery in the configurations documented in these notes.
• Only charge the battery using the board which we gave you.

176 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• Regularly inspect the hardware, especially if you need to make connections;
check the battery visually for damage, heating or possible puncture. If you
spot anything potentially problematic stop and ask for help immediately.

• If a battery becomes hot:

– if it appears safe to do so, unplug it from the power source
– warn others present to move away from the battery and do so yourself
– allow the battery to cool before touching it
– stop work and ask for help

• If you are at all unsure of any of these instructions please ask for help from a
member of staff.

• See also these safe handling instructions.

8.4 Build and Development Notes

8.4.1 DIY Alexa

Chris Greening’s ESP32-based voice-controlled home automation system, or “DIY
Alexa”, uses a custommicrophone board for the ESP32 that he has developed based
on a low-noise MEMS mic:

Hamish Cunningham 177

https://goo.gl/HyrxFb
https://github.com/atomic14/diy-alexa
https://github.com/atomic14/diy-alexa
images/cmg-mic-01.jpg
images/diy-alexa-01.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(We have one each of the mics, and speakers and speaker driver boards.)

Other links:

• blog post
• introduction
• github for DIY alexa
• Alexa and tensorflow video
• tensorflow for ESP32 video
• github for mic board
• MEMS mics video
• mic board docs
• my fork of Chris’ code, that lowers recognition thresholds and adds some sup-
port for controlling a featherwing LED array

– note that it has the mic’s SCK pin on GPIO 32 and the SD on 33; if you’ve
wired yours differently you can edit these in src/config.h

The sound input stage is also documented separately.

Note: you will need to solder header pins onto the amp and mic boards. Shout if
you need help!

8.4.1.1 Why “Marvin?”

Marvin, the Paranoid Android, is a character in The Hitchhikers’ Guide to the Galaxy,
a Trilogy in Five Parts by Douglas Adams. He suffers from chronic pain in the diodes
down his left side so tends to be a bit melancholy!

Marvin is definitely more intelligent than the average robot as he can talk fluently,
and when Chris Greening (an electronics experimenter from Edinburgh) decided to
make a talking interface to some of his projects he decided to call it Marvin.

Here’s how to build one.

178 Hamish Cunningham

images/diy-alexa-01.png
images/diy-alexa-01.png
https://www.cmgresearch.com/2020/10/15/diy-alexa.html
https://youtube.com/watch?v=FZ4ayyTXM2s
https://github.com/atomic14/diy-alexa
https://www.youtube.com/watch?v=re-dSV_a0tM
https://www.youtube.com/watch?v=kZdIO82059E&t=0s
https://github.com/atomic14/ICS-43434-breakout-board
https://www.youtube.com/watch?v=3g7l5bm7fZ8
https://easyeda.com/chris_9044/ics-43434-tindie
https://github.com/hamishcunningham/diy-alexa

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.1.2 Parts

To talk to a robot (or a computer or a phone or a smart speaker or TV or etc.) we
need the following components:

• a microphone, to hear what we say
• a loudspeaker, to play back what the computer says, and an amplifier to drive
the speaker

• a processor that can recognise at least one word (a “wake word” like “Siri” or
“Alexa” – in our case, “Marvin”)

• a way of wiring all the other parts together
• a battery and an on/off switch
• a resistor to set the gain on the amplifier
• something to control: three ordinary LEDs can simulate several smart home
devices, for example

For this project we’re using an ICS43434 mic (on a circuit board designed by Chris
Greening), a MAX98357 amplifier (from Adafruit in New York), a little 4Ω speaker
from local factory shop Pimoroni, and an ESP32 microcontroller board (also from
Adafruit, and called a “feather”).

A lot of the things we can use Marvin for have something to do with controlling other
things: switching lights on or off, or turning the music down, for example. To have
some things to control we’ll also wire in some ordinary LEDs (Light Emitting Diodes;
one red, one yellow, one green).

Last but not least, we’ll wire everything together on a breadboard.

Together the set of parts looks like this:

Note: we’re not supplying batteries and switches before Easter; you can pick them
up later in term if you with. (We’re not supplying the LED array featherwing ei-
ther.)

8.4.1.3 Putting it all Together

Beware!!! Every part has to be placed precisely into the right holes on the bread-
board. There are letters across the top of the board, and numbers down the sides.

Hamish Cunningham 179

images/parts.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Use these to help you place the parts correctly, and ask for help when you’re not
sure!

Below are the circuit schematics and breadboard layouts. (Note that my fork has
the mic’s SCK pin on GPIO 32 and the SD on 33; if you’ve wired yours differently
you can edit these in src/config.h.)

8.4.1.3.1 1. Wiring, and the ESP32 Feather First, make the circuit connections shown,
then gently push the rectangular feather circuit board (the microcontroller) into the
breadboard:

Note 1: in these pictures we also have an LED array on top, but we don’t have
those in stock for COM3505.

Note 2: I got them the wrong way around in this picture!

Also note that this step is fiddly and it is easy to bend the pins by accident. Ask for
help if you need it!

180 Hamish Cunningham

images/marvin_schem.png
images/marvin_bb.png
images/feathers.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.1.3.2 2. Microphone Second, push in the mic board.

Here is is positioned ready to insert:

And here it is when fully pressed in:

Hamish Cunningham 181

images/mic1.jpg
images/mic2.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Easy peasy, lemon squeezy?

8.4.1.3.3 3. Amp and Speaker To connect the amplifier and the loudspeaker, first
make sure that the terminals on the top are unscrewed sufficiently to allow the
wires to fit in:

182 Hamish Cunningham

images/mic2.jpg
images/mic2.jpg
images/spk1.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

You may need to separate the red (positive) and black (negative, or ground) wires a
little at the end. Then push them into the terminals, making sure that the red goes
to positive as marked on the board with a “+” and the black to negative:

Hamish Cunningham 183

images/spk1.jpg
images/spk1.jpg
images/spk2.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Then tighten up the screws and check that the wires won’t pull out. (Don’t pull too
hard!)

184 Hamish Cunningham

images/spk2.jpg
images/spk2.jpg
images/spk3.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Now we can push the amplifier board into the breadboard. Here it is ready to be
inserted:

Hamish Cunningham 185

images/spk3.jpg
images/spk3.jpg
images/spk4.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Here it is from the other side:

186 Hamish Cunningham

images/spk4.jpg
images/spk4.jpg
images/spk5.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

And here’s what we have so far (after pushing the amp down):

Hamish Cunningham 187

images/spk5.jpg
images/spk5.jpg
images/leds1.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Getting close!

8.4.1.3.4 4. LEDs Now we’ll add the red/yellow/green individual LEDs. (Later on
these will simulate house lights in the “kitchen,” on the “table” or in the “bedroom,”
and Marvin has been set up to respond to each of those words individually.)

We’ll use sockets on rows 26 (green), 25 (yellow) and 21 (red) for these:

188 Hamish Cunningham

images/leds1.jpg
images/leds1.jpg
images/leds2.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Now the tricky bit: LEDs have what is called polarity. In other words, they have
to be facing the right way around in the circuit (like the loudspeaker), so we need
to be able to figure out which leg is which. Each LED has one slightly longer leg,
and this one is the positive leg (or anode):

Hamish Cunningham 189

images/leds2.jpg
images/leds2.jpg
images/leds3.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

In Marvin’s circuit, the positive side needs to be the one nearest to the feather, so
make sure to put the longer pins into those holes. Here we can see the Green LED
with it’s positive (longer) pin in a hole just next to the number 26:

190 Hamish Cunningham

images/leds3.jpg
images/leds3.jpg
images/leds4.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Next comes yellow, in 25:

Hamish Cunningham 191

images/leds4.jpg
images/leds4.jpg
images/leds5.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Then red, in 21:

192 Hamish Cunningham

images/leds5.jpg
images/leds5.jpg
images/leds6.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Nearly done!

8.4.1.3.5 5. Battery and Switch Note: as above we’re not supplying these before
Easter.

All that’s left is to connect the switch to the power input of the feather, then connect
the battery to the other end of the switch. Note that these connectors are A) fiddly
(and have to be the right way up to fit the little bar on the top side of the while plug
into the hole in the black socket), and B) take quite a lot of force to plug in (and to
pull out). Do ask for help if you’re stuck!

Here’s the switch ready to connect:

Hamish Cunningham 193

images/leds6.jpg
images/leds6.jpg
images/bat1.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

And here it is ready to plug in:

194 Hamish Cunningham

images/bat1.jpg
images/bat1.jpg
images/bat2.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

And now plugged in:

Hamish Cunningham 195

images/bat2.jpg
images/bat2.jpg
images/bat3.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Last of all, plug in the battery, and you’re done!

196 Hamish Cunningham

images/bat3.jpg
images/bat3.jpg
images/bat4.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.1.3.6 6. A Complete Marvin! Now we’ve got a whole Marvin :)

Hamish Cunningham 197

images/bat4.jpg
images/bat4.jpg
images/complete.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Click down the switch, wait for a minute or two until things start flashing, then try
a few sample phrases:

• Marvin «pause until you hear the “ting!”» turn on the lights
• Marvin «ting!» turn off the kitchen
• Marvin «ting!» tell me a joke
• Marvin «ting!» tell us about life

8.4.1.4 Marvin, Siri, Alexa, Google Home: a Privacy Nightmare?!

How does it all work? And why bother?

The processes that are happenning in Marvin can be thought of like this:

198 Hamish Cunningham

images/complete.jpg
images/complete.jpg
images/sys-arch.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

TODO link back to Chris’ page

The utility of this type of system is borne out by the popularity of smart home
hubs, smart speakers and the like. Their big disadvantage, of course, is that they
transmit sound recordings from your environment to cloud-based services which
are of their nature untrustworthy. One motivation for building our own versions is
that we can be more confident of controlling these transmissions, and, in future,
perhaps remove them all together.

8.4.2 unPhone Projects

The unPhone short-circuits the hardware prototyping step by integrating a net-
worked microcontroller with range of sensors and actuators, including

• a touchscreen UI
• infra-red LEDs
• LoRa radio
• SD card
• accelerometer
• an RGB LED
• a vibration motor
• battery management
• power and reset switches
• USB to serial
• etc.

In addition the unPhone supports an expander board which provides two feather-
wing sockets and a small matrixboard prototyping area.

To program the unPhone you must install a set of patched libraries in your develop-
ment environment; see Chapter 11 and the unPhoneLibrary repository for details.

Hamish Cunningham 199

images/sys-arch.png
images/sys-arch.png
https://unphone.net/
https://gitlab.com/hamishcunningham/unPhoneLibrary

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

8.4.3 A Simple Robot Car

The arrival of robot overlords has been much anticipated. Get ahead of your fellow
humans by building a simple robot car! The one we’ll be making is from Adafruit:

Figure 8.1: robot

When following the build instructions, read through them first before jumping off
to the linked details and starting assembly – there are some steps in the earlier
instructions that you are later told to modify.

Note: some of the images below use the unphone platform to drive the robot;
we’ve had problems sourcing this for 2022 due to the worldwide chip shortage, but
we’re hoping to have it available in early April. Cross your fingers!

200 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Follow Adafruit’s build instructions to construct the robot chassis and then attach
the breadboard on top. (Ignore the “Temporarily unable to load embedded content”
message.)

(See also the other Adabox002 videos. but again, remember that we’ll be using the
ESP32 feather as our processing board rather than the bluetooth board supplied in
AdaBox002.)

You will need a motor driver board, and use a small pozidrive screwdriver and a
small pair of pliers (available in the electronics lab or project space – DIA 2.01 or
1.01) to put the headers into the stepper motor connections as shown:

Figure 8.2: motor driver with headers

Now we can connect the motors to the header pins:

Hamish Cunningham 201

https://learn.adafruit.com/tri-layer-mini-round-robot-chassis-kit?view=all
https://learn.adafruit.com/adabox002/assembling-your-robot
https://learn.adafruit.com/adabox002/assembling-your-robot
https://www.adafruit.com/product/3235

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Figure 8.3: robocar front

Then screw the battery box wires into the connector at the side of the motor driver
– make sure to put the red lead in the + connection and the black one into the –
connection:

202 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.4: robocar side
Hamish Cunningham 203

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

You can follow the next section here: basic code for robot to test out the robot.

We are using the aREST library to provide a RESTful interface – one that responds
to HTTP calls to URI’s like //esp32/forward.

The code is on github here and the code is explained on this Adafruit page.

Modify the sketch to use your local wifi access point (phones on tether work well as
they report the IP of connected devices). Also change the first two lines to adapt
this code to run on the ESP32; they should read:

1 #include <WiFi.h>
2 #include <aREST.h>

Once you have programmed your ESP32 you can discover it’s IP address either on
the serial port or via your hotspot. Using a laptop, join the same network as the
ESP32. Edit the script.js file inside the interface directory to replace the IP address
with that for your ESP32. Now you can run the demo.html file in a browser for wifi
control of the robot!

8.4.3.1 Robot Car: Kit List

• Robot chassis and motor kit
• Motor driver feather
• Battery box
• 4xAA batteries
• 4xlong pin headers
• 4 Sticky pads

8.4.4 Binary Diff for Incremental OTA

(This project doesn’t require any additional hardware, using just a bare ESP32, so is
a good choice if you’re not interested in the electronics prototyping side of things.)

As we discussed earlier in the course, the resource-constrained nature of IoT devices
makes keeping themup-to-date with security patches and new features a significant
challenge, and in situations where network connectivity may be interrupted it is
common to allocate two or three times the requisite amount of flash memory to
store firmware: one for the current version and one to download the next (updated)
version into (and sometimes another one to hold a “factory reset” version). This
adds a significant cost to the device.

This project is to port an approach to incremental updates that is used to minimise
the size of updates in several contexts including Ubuntu’s snap package manager
and Google Chrome’s courgette updates process. Incremental updates work by
analysing the difference (or delta) between a new version of (in our case) firmware

204 Hamish Cunningham

https://learn.adafruit.com/adabox002/how-your-robot-works-the-basics
https://github.com/openhardwarerobots/esp8266-robot
https://learn.adafruit.com/build-an-esp8266-mobile-robot/configuring-the-robot
https://ubuntu.com/blog/snap-updates-are-getting-smaller-heres-why
https://blog.chromium.org/2009/07/smaller-is-faster-and-safer-too.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

and the previous version, then sending only the list of changes. A client-side rou-
tine is then required to check that the change bundle has come down the pipe
successfully and if so apply the change list to the firmware image.

This isn’t a new approach; binary diff for software update is quite common. This
blog post has a good summary; systems often use bsdiff or xdelta. The disadvan-
tage is that when differencing object files small changes in source can result in
huge changes in the binary: “compiled code is full of internal references where
some instruction or datum contains the address (or offset) of another instruction
or datum.” The Chrome courgette system is particularly interesting however, be-
cause it performs a limited decompile of the object code and then analyses the
changes between versions with the address changes separated out from instruction-
level changes. This can result in a much smaller diff. (Recent versions of Firefox
have taken up the same system, I believe.) Chromium (the open source version of
Chrome), for example, sometimes achieves a huge reduction in update size using
courgette:

• Full update: 10,385,920 bytes
• bsdiff update: 704,512 bytes
• Courgette update: 78,848 bytes

(Posted here.)

To do this type of update on an ESP32 we would need to:

• derive an appropriate ELF delta generator (luckily courgette supports the ELF
binary format used by the Xtensa chips already)

• adapt the build and burn script idf.py to call this generator while creating build
/MyFirmware.elf and build/MyFirmware.bin

• adapt an OTA process like that in Ex09 (or ESP’s own RainMaker) to use the
new deltas

• write firmware to apply deltas on the ESP32 and verify their correctness

This project is not an easy option, but if successful would be a real contribution to
the community :)

8.4.4.1 Advanced Topic: Drag&Drop Update

As an advanced topic, it would be interesting to consider the possibility of closing
the gap between the old world of C++ firmware burn tooling and the new one of
drag-and-drop Python or JavaScript script update that has started to be a common
development mode for microcontrollers such as the BBC’s Micro:bit or boards sup-
porting CirciutPython or the Espruino JavaScript port (now including the unPhone;
see Appendix B. Can we compress binary firmware updates sufficiently to rival the
new approaches?

Hamish Cunningham 205

https://www.ably.io/blog/practical-guide-to-diff-algorithms
https://github.com/mendsley/bsdiff
https://github.com/jmacd/xdelta
https://www.chromium.org/developers/design-documents/software-updates-courgette
https://bugzilla.mozilla.org/show_bug.cgi?id=504624
https://blog.chromium.org/2009/07/smaller-is-faster-and-safer-too.html

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Another issue to consider here is board support for USB OTG: if we can treat the
board as a mass storage device then drag-and-drop becomes trivial in most operat-
ing systems. This is one of the key differences between the ESP32 and the ESP32S2
/ ESP32S3, for example.

8.4.5 TV Remote, TV-B-Gone: IR-Remote Projects

Using an IR LED, start by reviewing the TV-B-Gone codes and code inspiration, then
read on for how to get started. Make sure you have collected an infra-red reciever:

that demodulates the IR transmissions and produces digital signals straight into
the ESP32. (You can use these for testing and also to demo the operation of your
project in the documentation.)

If we attach infra-red (IR) LED’s to our ESP, we can use it to send remote control
commands – for example to turn off TV’s, or perhaps issue a series of commands
such as turn on the TV, turn on a satellite box, change the input source, etc.

The mechanics of using the timers is complex and also different on the arduino
uno and the ESP32. Luckily the well established IRremote Arduino Library by z3t0
handles this for us. The latest version lists support for ESP32 receiving IR only!

Good old Andreas Spiess has implemented the missing send functionality from the
IR remote library.

206 Hamish Cunningham

https://learn.adafruit.com/tv-b-gone-kit?view=all
https://github.com/z3t0/Arduino-IRremote
https://github.com/SensorsIot/Definitive-Guide-to-IR

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

The libary should be modified to reflect the IR LED pin used on your board – so if
you’re installing this yourself then modify the IRremote.h file – line 262 – change:
byte timerPwmPin=3; to read: byte timerPwmPin=12; (assuming you’re connecting on pin
12).

In order to know the codes that are used in a certain device (there are hundreds of
different propriatary formats!) you can search on the internet – noting that there are
at least three ways to write the binary formats and several other ways to express
the codes even in a particular protocol.

This page gives good if dense info – combined with this page listing Sony TV device
codes.

Ok – so, from the code page, we see that the first table lists basic codes, such as
code 21 for power. The Sony:1 at the head of the table tells us that of the various
device codes used by Sony TVs, these codes are part of device 1.

So the worked example gives us a template for how to proceed:

Our command is code 21 – convert to the 7 bit binary value 0010101 and reverse
it to get 1010100. My device code 1 gets expressed as a 5 bit binary value 00001
and reverse it to get 10000. Put these together to get 101010010000, which is A90
hex. Whew! The 12-bit nature of the codes explains the second parameter in the
call.

And looking at the example sketches included with the library, IRsendDemo does
indeed use code 0xA90 – this provides confidence that maybe I’ve got my sums
right – and lo and behold – it turns my TV off!

It is often easier to connect an IR receiver device:

Hamish Cunningham 207

http://www.righto.com/2010/03/understanding-sony-ir-remote-codes-lirc.html
http://www.hifi-remote.com/sony/Sony_tv.htm

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

and read the codes that are produced by an existing remote control. In order to do
this we use a TSOP4838 photoreceiver device that has a sensor, amplifier, demod-
ulator and signal conditioning circuitry all built in. It connects directly to the ESP32
as illustrated:

208 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.5: sensor in socket

Pin 1 is Data Out, pin 2 is Ground and pin 3 is Vcc – 3.3V in our case. This means
you can just put the sensor into the expander as shown above, and the data comes
into pin A0 (on this image). (However it isn’t very robust!)

NOTE: on the latest (2019) unPhone, pin A0 won’t work for this purpose; use A1
(next along) instead:

Hamish Cunningham 209

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Figure 8.6: sensor in socket

For a more reliable connection, solder the sensor directly into the board (though
not on A0!):

210 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.7: sensor in holes
Hamish Cunningham 211

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

When you have a device that sends IR codes and a receiver that decodes them, you
can put them together for testing like this:

Figure 8.8: two devices

8.4.6 Light Sensor

We are using the TSL2591 light sensor in a handy breakout from Adafruit.

You will need to solder some jumper wires to four points on the sensor - these are
the same whether you have the square or round board:

212 Hamish Cunningham

https://learn.adafruit.com/adafruit-tsl2591

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.9: Light sensor

Then it’s a simple matter of plugging the wires into the expander like so:

Hamish Cunningham 213

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Figure 8.10: Light sensor expander

8.4.7 Remote Control Power Sockets for Home Automation

Control the world!!! Or at least, things that plug into a mains socket… This project
adds remote mains power switching to your ESP32 using a 433 MHz radio transmit-
ter. This type of transmitter is a common mechanism for remote controls, e.g. for
your central heating. The actuator we are using is a radio transmitter circuit that

214 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

uses the 433MHz frequency:

Figure 8.11: 433MHz transmitter

This is part of the ISM band of frequencies that consumer electronic devices can
use without license – in our case we are using electric sockets that switch on and
off in response to codes issued on that frequency:

Figure 8.12: 433MHz mains socket

By using a radio-controlled mains socket we cunningly avoid having to interface

Hamish Cunningham 215

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

directly with the mains. Being able to switch a mains powered device such as a
light, fan, heater etc. opens up the possibilities of control greatly – hopefully it’s
already giving you some ideas…

Figure 8.13: Power Socket circuit schematic

As you can see from the schematic we can just connect the transmitter without
needing any additional components. This transmitter is designed to operate at 5V –
but it does work at 3.3V with a lower power consumption but reduced range. If you
want to use this transmitter on batteries, you might like to experiment with running
it on 5V vs 3.3V and see whether the trade-off is desirable for your project needs.

Soldering the transmitter into the expander should look something like this:

216 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.14: Expander and 433MHz transmitter

Here I’ve soldered wires into the holes just in front of the ones for the transmitter.
On the expander the prototype holes aren’t connected to each other, so on the back
I made sure the wires connected to the pins of the transmitter:

Hamish Cunningham 217

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Figure 8.15: Expander bottom showing 433MHz connections

The sockets come in packs of three and with a single push button remote control.
Eight different sets of codes are used to signal to the sockets so that you can use
more than three sockets in one location. The sockets are programmed to match the
remote (which can’t be changed), but can also be re-programmed to change the
code they respond to. For approx. 3 seconds when power is applied, the socket is in
learning mode; if a control code is broadcast during this period the socket will learn
this code and begin responding. If no code is received during the first 3 seconds,
the socket goes into normal mode and responds to the last code learned. Each
socket code has an ‘on’ command and an ‘off’ command – there seems to be no
other commands and no feedback – so no ability to read the status of the socket
for example.

You can initialise the handy RC Switch library like thus:

1 #include <RCSwitch.h>
2 RCSwitch mySwitch = RCSwitch();

Then a couple of setup configurations:

1 // Transmitter is connected to esp32 Pin #12
2 mySwitch.enableTransmit();
3
4 // We need to set pulse length as it's different from default
5 mySwitch.setPulseLength(175);

218 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Now we can send a command to the switch:

1 mySwitch.send(4281651, 24);

I’ve mapped out the codes for 10 sets of sockets here: (updated August 2022).

Without an antenna the range of the transmitter is only a meter or so; but a simple
aerial can be made with a piece of wire. Using this aerial range can often reach
20-30m and usually can work through walls and ceilings. Instructions can be found
here (credit: Ben Schueler).

Figure 8.16: Aerial

Once you’ve made your aerial you should solder it so it connects with the pin on
the right of the transmitter – marked ‘ANT’ so it will look something like this:

Figure 8.17: Expander with aerial

Hamish Cunningham 219

images/power-socket-codes.csv
https://github.com/hamishcunningham/fishy-wifi/blob/master/build_doc/How-to-make-a-Air-Cooled-433MHz-antenna.pdf

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

8.4.7.1 Home Automation: Kit List

• 433 MHz transmitter board
• mains socket switch
• 30cm length of wire for ariel

8.4.8 Sound Input

We used to use Adafruit’s I2S microphone breakout board. Figuring out how to wire
and drive it is a little tricky but not impossible :)

More recently we’ve been experimenting with Chris Greening’s ICS-43434 mic
board. There’s documentation and code from his github here.

8.4.8.1 CMG ICS-43434

Chris Greening’s ESP32-based Alexa-alike uses a custom microphone board:

I wired this up to the Huzzah ESP32 like this:

220 Hamish Cunningham

https://learn.adafruit.com/adafruit-i2s-mems-microphone-breakout
https://github.com/atomic14/ICS-43434-breakout-board
https://github.com/atomic14/diy-alexa
images/cmg-mic-01.jpg
images/diy-alexa-02.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

There’s code to drive it and collect the audio here. Note that the Feather Huzzah
pins to connect the mic to are:

• serial clock (SCK, config field .bck_io_num): pin 13
• left/right clock, or word select (WS, .ws_io_num): pin 15
• serial data (SD, .data_in_num): pin 21

(Config field .data_out_num is for outward communication on I2S and should be set to
I2S_PIN_NO_CHANGE as we’re only listening to the mic in this case.)

To (re-)create the lib/tfmicro tree in MicML follow his instructions here.

8.4.8.2 Adafruit SPH0645LM4H

Try this:

• wire the pins like this (the colours refer to the diagram on Adafruit’s example
and in the pictures below):

– BCLK (or BCK, “bit clock,” or “serial clock”) to GPIO 13 (blue)
– LRCL (“left-right clock,” or WS, “word select”) to GPIO 15 (yellow)
– DOUT (or DO, “data out,” or SD, “serial data”) to GPIO 21 (orange)
– 3V and ground to the 3V3 and GND pins (red, black)

• consult Adafruit for the ESP32 pinouts
• there’s an example in exercises/MicML
• there’s also example IDF code at esp-idf/examples/peripherals/i2s (which is prob-
ably in ~/esp if you’ve used magic.sh or the Espressif Linux instructions for setup)

Hamish Cunningham 221

images/diy-alexa-02.jpg
images/diy-alexa-02.jpg
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/MicML
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/MicML
https://github.com/atomic14/platformio-tensorflow-lite
https://learn.adafruit.com/adafruit-i2s-mems-microphone-breakout
https://learn.adafruit.com/adafruit-huzzah32-esp32-feather/pinouts
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/MicML

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Then you can try this to test:

1 cd ...the-internet -of-things/exercises/MicML
2 ./magic.sh arduino-ide

And open Tools>SerialPlotter.

You should see something like this:

The hardware setup will look something like this (with a white wire for ground, in-
stead of black):

222 Hamish Cunningham

images/micml-01.png
images/i2s-mic-1.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

If you hit problems, there’s useful info in this post, and Espressif’s I2S documenta-
tion here.

Hamish Cunningham 223

images/i2s-mic-1.png
images/i2s-mic-1.png
images/i2s-mic-2.png
https://www.esp32.com/viewtopic.php?t=4997
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/i2s.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/i2s.html

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

8.4.9 MP3 Player

The ESP32 feather can be attached to a featherwing with a VS1053 MP3 decoder
chip which can also do a nice job of synthesising MIDI input. Store your .mp3 files on
an SD card (after formatting it to FAT), and see the example code for how to play
via the headphone jack.

Note that streaming audio is a blocking operation for at least one of the ESP32’s
cores, so your UI will have to find clever ways to squeeze into available processing
power!

8.4.10 NeoPixels; Dawn Simulator Alarm

“Showme someone who is bored of LED’s and I will show you someone who is bored
of life.” Ahem. This project uses beautiful and useful NeoPixel LEDs to simulate
dawn:

Adafruit’s NeoPixels are bright multicolour LEDs controlled via a single signal wire
(plus two for power). Read up on them here - we’re using the NeoPixel stick and the
NeoPixel Fether.

There used to be a bug with the ESP32 having difficulty with the timing see here,
but hopegfully it was fixed here.

To get them working, first solder on three connections for power and data:

Figure 8.18: Neopixel wired.

Then connect these to the USB 5V, GND and pin A0 as shown:

224 Hamish Cunningham

http://www.vlsi.fi/en/products/vs1053.html
http://www.vlsi.fi/en/products/vs1053.html
http://www.vlsi.fi/fileadmin/software/VS10XX/vs1053mid.mp3
images/neopix-featherwing.jpg
https://learn.adafruit.com/adafruit-neopixel-uberguide?view=all
https://learn.adafruit.com/adafruit-neopixel-uberguide?view=all#faq-2894396
https://learn.adafruit.com/adafruit-neopixel-featherwing
https://github.com/adafruit/Adafruit_NeoPixel/issues/139
https://github.com/adafruit/Adafruit_NeoPixel/pull/253

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.19: Neopixel on expander

8.4.10.1 Dawn Simulator: Kit List

NeoPixel array featherwing

8.4.11 Peer-to-Peer Voting Systems

The challenge with this project is to provide mechanisms to prevent vote stuffing,
interception and ensure privacy of votes.

The first thing to do is to use the code for Ex09 so that you have a way to configure
your ESP on new networks:

1 void setup09() { // wifi UI
2 ...
3 }
4
5 void loop09() {
6 dnsServer.processNextRequest(); // handle DNS requests
7 webServer.handleClient(); // handle HTTP requests
8 ...
9 }

Hamish Cunningham 225

https://learn.adafruit.com/adafruit-neopixel-featherwing

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Secondly, find the location of your board using Google’s geolocation API. In order
to make the things we’re voting on localised, we need a way to find our location
and report this.

This could be provided by a GPS chip, however these consume a moderate amount
of power and take a fair amount of time to initialise and get a ‘first fix.’ In addition
they don’t work well in urban canyons (between buildings) or indoors.

Alternatively we can use a cunning technique that relies on the relative strength of
wireless signals. By comparing the signal strength seen by a device with a map of
access points the location of the device can be inferred through triangulation.

Google has already done the tedious task of collecting the location of millions of
wireless access points and makes an API available (to developers) that takes a list of
wireless signals in the location, and returns a latitude and longitude co-ordinate.

Github user @gmag11 has contributed code for the ESP32 that uses the google API
to return location data - Google location code

You will need to get a google API key from Google Geolocation API

Note: in order to Get a list of available votes, you could use a Twitter account to
store and access votes, using Twitter’s location function, or implement an IFTTT
notification mechanism.

8.4.12 Panic Button

This project uses Google’s geolocation API and/or the GPS featherwing to figure out
where you are when you press the button.

The idea is to provide a way to signal a “panic” (or need for urgent assistance) to
others, e.g. security staff. In order to be a useful panic button, we need a way to
find our location and report this.

This could be provided by a GPS chip, however these consume a moderate amount
of power and take a fair amount of time to initialise and get a ‘first fix.’ In addition
they don’t work well in urban canyons (between buildings) or indoors.

Alternatively we can use a cunning technique that relies on the relative strength of
wireless signals. By comparing the signal strength seen by a device with a map of
access points the location of the device can be inferred through triangulation.

Google has already done the tedious task of collecting the location of millions of
wireless access points and makes an API available (to developers) that takes a list of
wireless signals in the location, and returns a latitude and longitude co-ordinate.

Github user @gmag11 has contributed code for the ESP32 that uses the google API
to return location data - Google location code.

You will need to get a google API key from Google Geolocation API.

226 Hamish Cunningham

https://github.com/gmag11/ESPWifiLocation
https://developers.google.com/maps/documentation/geolocation/get-api-key
https://learn.adafruit.com/adafruit-ultimate-gps-featherwing
https://github.com/gmag11/ESPWifiLocation
https://developers.google.com/maps/documentation/geolocation/get-api-key

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.13 Ultrasonic sensors

The HC-SR04 ultrasonic sensor is a cheap and cheerful way of sensing distance to
solid objects like a wall. The device is well described here: tutorial on ultrasonic
sensor.

We can connect it to an ESP32 without needing any additional components:

.

Following the schematic here:

Hamish Cunningham 227

http://www.instructables.com/id/Simple-Arduino-and-HC-SR04-Example/
http://www.instructables.com/id/Simple-Arduino-and-HC-SR04-Example/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

.

You can use this sensor without a library, as its operation is so simple. The sensor is
triggered by a 10ms pulse to the TRIG pin, from GPIO pin 25. The sensor sends an
ultrasonic pulse and waits for the response, triggering the ECHO pin to GPIO pin 34.
The time between the trigger and the echo is directly proportional to the distance
between the sensor and the object. The sensor doesn’t work properly with small
objects and complex fields of view - it’s really designed for detecting obstacles like

228 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

walls. In code, once the trigger pulse has been set, the arduino function pulseIn is
useful to time the response:

1 int duration = pulseIn(echoPin, HIGH);
2 int distance = (duration/2) / 29.1;
3 Serial.print(distance);
4 Serial.println(" cm");

However, this sensor is not very well behaved! It occasionally gives wrong values,
sometimes the pulse never returns to the sensor correctly, and sometimes a spuri-
ous signal will be reported. Simple functions to average readings or exclude results
that are more than 50% larger or smaller than the average of the last few results
can help clean up the data.

8.4.14 Smart Watches

(If you want to do a project on this in 2022 you will have to supply your own as we
don’t have them in stock.)

The Lilygo T-Watch-2020 is a smart watch development kit based on the ESP32.

The watch includes an accelerometer, touch display, infra-red sensor, loudspeaker
and vibration motor. In other words it fits out definition of IoT devices: a networked
microcontroller with sensors (accelerometer; touch input) and actuators (screen;
vibration motor; the ESP32’s radio). It is powered by a LiPo battery managed by an

Hamish Cunningham 229

http://www.lilygo.cn/prod_view.aspx?TypeId=50053&Id=1290
images/lilygo-watch-01.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

AXP202 PMU2 and has its own RTC3.

There are many possible projects you can build with the watch, for example:

• exercise tracker
• data logger
• small-screen UI
• fuzzy predictive text
• home automation
• etc. etc. etc. (just drop me an email first to check scope)

If you want to emphasise the hardware component of the project, you could also
connect the watch to your feather (over WiFi or BT or BLE) and use the feather /
LED / etc. combination as an actuator (e.g.: turn the TV on or off over IR when I
enter the room), perhaps using a gesture language. In the other direction youmight
experiment with control of your watch via a mic on your feather, for example.

How to get started? The most comprehensive firmware setup currently available
is probably Bill Dudley’s github project, and there is some example shell code illus-
trating how to set this up in the exercises tree.

8.4.15 Predictive Text UI

There’s a simple predictive text library (see predictor.cpp) in your exercises tree
(which was originally written by Mark Hepple – thanks Mark! – and then ported to
the ESP32). Currently the UI, using the unphone touchscreen, is very basic – can
you improve it? How many words can you support on the ESP without running out
of memory?

2PMU: Power Management Unit.
3RTC: Real Time Clock.

230 Hamish Cunningham

https://github.com/wfdudley/T-watch-2020
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/exercises/LilygoWatch
images/touchscreen-featherwing.jpg
images/touchscreen-featherwing.jpg
images/touchscreen-featherwing.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

8.4.16 Musical Instrument

Using the VS1053’s MIDI synthesis capability and e.g. the ESP’s touch sensors as
control mechanisms many musical instruments become possible. Pick up a music
player featherwing if you want to build one of these.

8.4.17 Bedtime Tracker

Eyes drooping? C programming not seeming quite as exciting as usual? Perhaps
you should be getting more sleep :) Can you track your screen-off shut-eye time
using a light sensor, and present the data back in an easy to interpret form?

8.4.18 Battleships Game

(This requires a pair of ESPs, both with touchscreens, so check that these
are available to you before chosing!)

This is a popular game with simple UI requirements, perfect for a connected micro-
controller like the ESP32.

Hamish Cunningham 231

images/touchscreen-featherwing.jpg
images/touchscreen-featherwing.jpg
http://www.vlsi.fi/en/products/vs1053.html
http://www.vlsi.fi/fileadmin/software/VS10XX/vs1053mid.mp3
https://www.adafruit.com/product/3357
https://www.adafruit.com/product/3357
https://en.wikipedia.org/wiki/Battleship_(game)

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

8.4.19 A Note on UIs

These libaries might be worth looking at if you want to do sophisticated UI stuff:

• LittleVGL, which is now supported by Espressif, and looks like the best bet for
ESP32 at present

• Micro GFX, also supported by Espressif, also looks good but the source code
doesn’t seem to be on a public version control system

• Embedded Wizard which supports ESP32 (though not the Adafruit board specif-
ically), but isn’t open source

8.4.20 Air Quality Monitor

NOTE: we’re retiring this project, partly because it is quite challenging, especially
without access to the lab, and partly because there are newer and better solutions
that we haven’t had time to integrate into the course as yet. If you’re super confi-
dent and really want to give this a go, please get in touch, but if not please choose
another project.

The project used three sensors to measure various aspects of Air Quality:

232 Hamish Cunningham

https://littlevgl.com
https://ugfx.io
https://www.embedded-wizard.de/platforms/espressif-esp32

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.20: Air Quality assembled

This project is complex to wire up!

The old instructions, for reference:

We’ll be using two low-cost sensors to give an indication of air quality, a dust sensor
(Sharp GYP2Y1010AU0F) and a Volatile Organic Compounds sensor (MQ-135). In
addition we’re using a digital temperature and humidity sensor, the AM2302, a
clone of the popular DHT22.

Both air quality sensors are analog sensors that are powered by 5V. They return a

Hamish Cunningham 233

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

voltage that is between 0V-5V; the level of the voltage is proportional to the level
of dust or VOC’s sensed.

Because our ADC (Analog to Digital Converter) in the ESP32 only has a limited input
voltage range (0-1.5V with other ranges available) we need to scale the sensor
output voltage with a potential divider.

A potential divider is made of two resistors that divide the voltage according to the
formula:

1 Vout = Vin (R2 / R1+R2)

We need to divide the Vout by 5 to scale it correctly, giving Vout approx 1.3 and
Vin=5; working out the equation to fit into the available resistor values is a nice
excercise for the reader.

If the reader does not feel like exercising then online calculators, e.g. this one will
select resistors that minimise the error.

For further reading about the voltage divider see Sparkfun’s tutorial here.

The output voltages from these dividers go to the ESP32 – it has multiple ADC chan-
nels – we are using A2 and A3.

In our circuit, resistors R4 & R5 form a potential divider for the VOC sensor, reduc-
ing it’s range from the 0-5V the sensor outputs to 0-1.25V. The ADC has a switch-
able attenuator and so we can set it for 1.5V range with analogSetPinAttenuation(A0
, ADC_2_5db). We’re using this range as it is more linear than the 11db range, but
still gives a convenient voltage divider, and we avoid going to the end of the range
where the conversion looses accuracy.

For the dust sensor, we can also use the same voltage divider to reduce the 5V
output down to a measurable 1.25V, resistors R2 & R3 form this potential divider.

The AM2302 sensor uses a proprietary digital protocol but luckily a library hides
that from us. We add a 10K resistor R6 to act as a pull-up on the data signals from
this sensor to the microcontroller.

The other components in our circuit, R1 and C1, are needed to make the dust sensor
operate correctly. For more information on the dust sensor, read the application
note. Note – the capacitor C1 is an electrolytic type that has polarity – make sure
you wire it in the correct way round!

234 Hamish Cunningham

http://www.ti.com/download/kbase/volt/volt_div3.htm
https://learn.sparkfun.com/tutorials/voltage-dividers
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y1010au_appl_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y1010au_appl_e.pdf

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.21: a schematic

For construction, I recommend using breadboard at first, and then once the circuit
is working you can convert it to soldered connections. Stick the breadboard and
dust sensors down to the assembled expander board using sticky pads:

Hamish Cunningham 235

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Figure 8.22: Expander with bb dust

The idea is to place the dust sensor so that the hole in the centre of the sensor is
below the board, so that air (and dust) can be measured:

236 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.23: Dust sensor

Using the schematic as a guide, connect your component together on the bread-
board. You may find the wires from the dust sensor difficult to insert into the bread-
board – try twisting the strands of wire together. You may need to use a soldering
iron to melt some solder onto the twisted wire – this is called ‘tinning’ the wire:

4

4Image from thesolderblog.blogspot.co.uk.

Hamish Cunningham 237

http://thesolderblog.blogspot.co.uk/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Then I suggest starting by connecting the power wires – there are three voltages in
this circuit, two potential dividers and three signals going into the ESP32! With all
those connections it really helps to use colour codes to help keep them all in the
right places. I’ve used:

• black for ground
• red for 3.3V
• orange for 5V
• green for the MQ-135 signal
• blue for the AM2302 signal
• brown for the dust sensor signal

After all the sensors, wires and passive components have been placed on the bread-
board it might look something like this:

238 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Figure 8.24: Breadboard with sensors

Seriously – once you have got the circuit working – you are strongly advised to solder
the wires neatly in place otherwise you will be spending a lot of time debugging
loose wires!

8.4.20.1 Air Quality: Kit List

• Sharp dust sensor
• MQ-135 gas sensor

Hamish Cunningham 239

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• AM2302 Humidity sensor
• 3x10k resistors
• 2x3.3k resistors
• 1x180R resistor
• 1x220uF capacitor
• Dust sensor cable
• Breadboard
• Jumper cables
• 2x pin headers
• Sticky tape

8.5 COM3505 Week 08 Notes

8.5.1 WARNINGS!!!

If you’re now using LiPo batteries – please review the safety instructions above
and be sure to follow them. If in doubt ask a member of staff.

8.5.2 Learning Objectives

Our objective this week is to:

• start putting it all into practice by building a complete IoT device

8.5.3 Assignments and Assessment

• start work on the project!

8.6 Further Reading

Following on from the work we did in the last couple of weeks (on provisioning and
over-the-air updates), have a look at these:

• Challenges with Wi-Fi Provisioning for Embedded Systems.
• A Crash Course In Provisioning Wireless Networks.
• ESP32 vs. other industrial IoT microcontrollers.
• Check your knowledge of LiPo batteries (and see below): (NERC 2016) “NERC
Guidance on the Safe Use of Lithium Batteries.”

• Students on the course have access to the unPhone IoT development plat-
form, made in Sheffield in collaboration with Pimoroni. The unPhone hardware
schematics are described here, and illustrate the internals of a complex and

240 Hamish Cunningham

http://www.argenox.com/library/challenges-with-wi-fi-provisioning-for-embedded-systems/
https://www.link-labs.com/blog/provisioning-wireless-networks
http://uhurumkate.blogspot.com/2017/09/esp32-as-professional-gradeindustry-40.html
https://unphone.net/
https://pimoroni.com/
https://gitlab.com/hamishcunningham/unphone/blob/master/doc/README.mkd
https://gitlab.com/hamishcunningham/unphone/blob/master/doc/README.mkd

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

multifunctional IoT device (though are quite hard to understand from a stand-
ing start!).

• The Better IoT project has a nice tool to checklist your “early stages of de-
velopment: privacy, openness, interoperability, lifecycle, permissions, trans-
parence, data governance and security.”

Hamish Cunningham 241

https://betteriot.wordpress.com/

9 Learning in the Fog – AI on the Edge

If there is a subject with a greater reliance on impenentrable jargon than computing,
I have yet to find it. Fog? Edge? (Mist, even?) Since “cloud” has become the
accepted term for distributed computing, computation that happens locally has
started to acquire its own terminology building on the same metaphor. A smart
phone or an IoT device is an edge device (a droplet perhaps, or edge node). The
set of edge devices on a network make a fog or mist.1

We start this chapter by putting machine learning and AI in the context of edge
devices in the fog. After motivation, the first issue to address is the relatively low
power of computational resource available outside of the datacenter, which leads
to a discussion of federated learning.

9.1 Why Learn at the Edge?2

The vast majority of current applications are designed for data processing to be
performed predominantly in the cloud. There are several advantages for this model,
such as:

• data being available for processing at any time in the future.
• data engineers have access to the raw data, which can lead to its better un-
derstanding

• aggregating data from multiple devices, each operating under different condi-
tions, can instruct better Machine Learning models.

But more recently, privacy is becoming a growing concern in the population. Data
has long been seen as an important asset by large companies, but only now indi-
viduals are starting to recognise this fact about their own data. Streaming data to
the cloud may not be the model of future IoT applications.

So what can we do instead to protect data privacy? One answer is to train Machine
Learning models at the edge. Themethod with the most traction in current research
is Federated Learning.

1It works for me. I live in a country where rain is a way of life.
2These sections on machine learning contributed by Valentin Radu.

243

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

9.2 Federated Learning

Definition:

Federated learning is a machine learning setting where multiple entities
(clients) collaborate in solving a machine learning problem, under the coordi-
nation of a central server or service provider. Each client’s raw data is stored
locally and not exchanged or transferred; instead, focused updates intended
for immediate aggregation are used to achieve the learning objective. Focused
updates are updates narrowly scoped to contain the minimum information
necessary for the specific learning task at hand; aggregation is performed as
earlier [sic.] as possible in the service of data minimization … (Kairouz et al.
2019)

In essence, instead of sending your data to the cloud to train an ML model, with
Federated Learning the ML model is sent from the server to the edge (on the client).
Using the local data of the client, the model is updated to reflect a better perfor-
mance on the local data. This local update of the model is then sent to the server
for aggregation with updates from many other clients. The local data is discarded
after the model update and never leaves the device in its raw form.

Federated Learning enhances the following principles:

• mitigates data privacy risks by using raw data only locally
• reduces costs for the centralised server compared to traditional machine learn-
ing (because more of the training computations are performed at the edge)

Federated Learning has been receiving substantial interest recently, both from re-
search and industry, so it’s worth exploring it in the context of IoT data. The under-
lying conditions for this method to work in the IoT space are that sensing devices
(or nearby computing hosted on the local network, e.g. gateways or desktops) have
sufficient computing resources to store a fraction of the data and perform the model
updates.

In 2016, McMahan et al. introduced FL: “We term our approach Federated Learn-
ing, since the learning task is solved by a loose federation of participating devices
(which we refer to as clients) which are coordinated by a central server.” (Brendan
McMahan et al. 2016) An unbalanced and non-IID (identically and independently
distributed) data partitioning across a massive number of unreliable devices with
limited communication bandwidth are the best defining set of challenges.

9.2.1 How does FL work?

Developing a FL framework:

244 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1. Problem identification: The model engineer identifies a problem to be solved
with FL.

2. Client instrumentation: If needed, the clients (e.g. an app running on mobile
phones) are instrumented to store locally (with limits on time and quantity) the
necessary training data. In many cases, the app already will have stored this
data (e.g. a text messaging app must store text messages, a photo manage-
ment app already stores photos). However, in some cases additional data or
metadata might need to be maintained, e.g. user interaction data to provide
labels for a supervised learning task.

3. Simulation prototyping (optional): The model engineer may prototype model
architectures and test learning hyperparameters in an FL simulation using a
proxy dataset.

4. Federated model training: Multiple federated training tasks are started to train
different variations of the model, or use different optimization hyperparame-
ters.

5. (Federated) model evaluation: After the tasks have trained sufficiently (typ-
ically a few days), the models are analyzed and good candidates selected.
Analysis may include metrics computed on standard datasets in the datacen-
ter, or federated evaluation wherein the models are pushed to held-out clients
for evaluation on local client data.

6. Deployment: Finally, once a good model is selected, it goes through a stan-
dard model launch process, including manual quality assurance, live A/B test-
ing (usually by using the new model on some devices and the previous gen-
eration model on other devices to compare their in-vivo performance), and a
staged rollout (so that poor behavior can be discovered and rolled back before
affecting too many users). The specific launch process for a model is set by
the owner of the application and is usually independent of how the model is
trained. In other words, this step would apply equally to a model trained with
federated learning or with a traditional datacenter approach.

Hamish Cunningham 245

images/fl-flow.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The steps in training processes:

1. Client selection: The server samples from a set of clients meeting eligibility
requirements. For example, mobile phones might only check in to the server
if they are plugged in, on an unmetered wi-fi connection, and idle, in order to
avoid impacting the user of the device.

2. Broadcast: The selected clients download the current model weights and a
training program (e.g. a TensorFlow graph) from the server.

3. Client computation: Each selected device locally computes an update to the
model by executing the training program, which might for example run SGD
on the local data (as in Federated Averaging).

4. Aggregation: The server collects an aggregate of the device updates. For ef-
ficiency, stragglers might be dropped at this point once a sufficient number
of devices have reported results. This stage is also the integration point for
many other techniques which will be discussed later, possibly including: se-
cure aggregation for added privacy, lossy compression of aggregates for com-
munication efficiency, and noise addition and update clipping for differential
privacy.

5. Model update: The server locally updates the shared model based on the ag-
gregated update computed from the clients that participated in the current
round.

Typical numbers found in the deployments used at Google’s scale are presented in
the table below.

Scale

Total population size 106 – 1010 devices

Devices selected for one round of training 50 – 5000

Total devices that participate in training one model 105 – 107

Number of rounds for model convergence 500 – 10000

Wall-clock training time 1 – 10 days

9.2.2 Applications of FL

Google makes extensive use of FL in the Gboard mobile keyboard and in Android
Messages. Each time you type on the Gboard and it predicts the word you intend to
type next based on the text context, that is used as signal to strengthen the model
being used for word prediction. This model is then pulled from your phone and from
other users’ phones to update a large global model that is capable of predicting the

246 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

next word more robustly. Note here, not all the words you type are considered for
sharing in the global model, such as usernames or passwords. But anything that
falls in the general sense of using the language makes it into the global model.

Apple is using cross-device FL in iOS 13 for applications like the QuickType keyboard
and the vocal classifier for “Hey Siri.” The keyboard strategy is very similar to that
of Google’s. For the vocal keyword it stores samples that have a lower confidence
and did not activate the device. If these are followed by a stronger example that
wakes up the device, the immediately previous samples are considered for training
and updating the local model.

A growing application of FL is now taking place in medicine and banking, where data
is highly confidential, but actors can allow computing to happen in their system
closer to the data.

9.2.3 Research challenges

Non-Identical and Independently Distributed (non-IID) phemomena in FL is
usually explored in two directions – in hardware and in data:

• Non-IID hardware refers to the fact that not all clients (edge devices) have
the same computing capability. As such, synchronisation solutions need to
be calibrated for the slower devices that will not finish their updates as fast
as other higher performance computing devices. The simplest approach is to
introduce a timer and consider only those clients that respond in time, while
discarding any contributions that come after that deadline.

• Non-IID data refers to the fact that not all clients have a uniform distribution
of data (volume or variation of instances). Some devices may accumulate
more data and the variation of that data be more useful for the model update,
while others may be exposed to just a small number of samples and variations.
One strategy is to use weighted average for contributions based on the amount
of data they integrate over.

Two bottlenecks appear in practice:

• Communication (WiFi, mobile network).
• Reduced local computing resources.

These bottlenecks can be addressed by compression using quantisation or model
reduction:

• Gradient compression – reduces the size of the object communicated from the
client to the server.

• Model broadcast compression – reduces the size of the model communicated
by the server to clients.

• Local computation reduction – adapts the training to reduce the workload on
the client (e.g., model reduction, reduced cycles, hyperparameter turning).

Hamish Cunningham 247

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

9.2.4 Summary

Federated Learning is a distributed learning setting. This is built on many clients
contributing updates to a sharedmodel. A centralised server chooses a set of clients
to update the model. These clients update the global model with their own local
data and push that back to the server. The server aggregates the updates from the
contributing clients and pushes the updated model for many more clients to use
(even if they don’t participate in the update).

9.2.5 Hands on experience

This course has no lab associated to the theoretical concepts. However, there
are many resources online if you want to start playing with FL. The more popu-
lar repository is FedML. This has a set of examples and benchmarks you can ex-
plore independently. A dedicated implementation for IoT devices is proposed here
https://github.com/FedML-AI/FedML-IoT.

9.3 COM3505 Week 09 Notes

9.3.1 Learning Objectives

Our objective this week is to get cracking on the projects, continuing the course
theme of learning by doing. Four more weeks and you’ll have had a real taste of
creating a new IoT device, from breadboard to prototype, and be all set to become
a practising IoT engineer :)

You should have chosen your project now. If not, do so ASAP!

248 Hamish Cunningham

https://github.com/FedML-AI
https://github.com/FedML-AI/FedML-IoT

10 WaterElves, Gripples and Fish Poo: IoT
Case Studies

10.1 Aquaponic Control Systems

In section 7.2 I referred to aquaponics, a sustainable intensive agriculture technol-
ogy. Myself and colleagues work on monitoring and control systems that attempt to
make the technology simpler to use, and we build those systems using IoT technol-
ogy. This section will spend a little bandwidth looking at an IoT system for intensive
sustainable agriculture with aquaponics: the WaterElf. First a little context.

10.1.1 Urban Agriculture

Why bother growing things in towns and cities? Most of our agricultural land is
already being farmed, and most of our food production is part of a system which
prioritises profit over costs like pollution, soil degradation or injustice.

How can we grow more food in more places (and grow it quickly)? My colleague Jill
Edmondson ran a project called My Harvest (for whichmy team in Computer Science
built the database backend). Jill’s team used the data from that project (collected
from allotment growers across the UK) and a geospatial analysis of Sheffield city
green (and grey1) spaces to estimate the amount of food that could be produced
within the city boundaries. The results (published in Nature food (J. L. Edmondson
et al. 2020)) are surprising: urban spaces have the potential to host large-scale
growing that can make a significant contribution to our food supplies.

To do this we need intensive agricultural methods that don’t need soil. Whilst the
go-to option there is hydroponics (growing vegetables in disolved fertiliser), the diffi-
culty is that fertilisers are either a scarce natural resource (e.g. potash) or produced
using the Haber-Bosch nitrogen fixation process (which is currently responsible for
something on the order 1 or 2% of the world’s total energy consumption). The com-
bination of fish and vegetables in a closed loop system— or aquaponics— has both
low environmental impact and high productivity.

1“Grey spaces” are transient, informal and other less easily categorised areas of urban development.

249

https://www.sheffield.ac.uk/biosciences/people/aps-staff/academic/jill-edmondson
https://www.sheffield.ac.uk/biosciences/people/aps-staff/academic/jill-edmondson
https://myharvest.org.uk/
https://www.sheffield.ac.uk/dcs
images/ponics.gif
images/ponics.gif

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

2

At Regather’s Club Garden the Institute for Sustainable Food are building an ur-
ban farming demonstrator to showcase the potential of the technology, and hope-
fully to become part of an established urban food hub, on the edge of Sheffield’s
https://www.facebook.com/LansdowneEstate/.

Aquaponics replaces the fertilisers used in hydroponic growing with fish food, and
uses only as much water as the plants need. It works all year round, and can fit into

2The virtuous circle of aquaponics.

250 Hamish Cunningham

images/ponics.gif
images/ponics.gif

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

the nooks and crannies of urban spaces. Vegetarians use ornamental fish; others
use edible species.

3

The technique creates a symbiotic ecosystem of fish and plants that is necessar-
ily clean — if we tried to add fertilisers or pesticides to the growbeds we would
soon damage the fish, as would growth factors or prophylactic antibiotics fed to the
fish. The widespread use of agrochemicals in our current food production indus-
tries drives down resilience — most are dependent on oil, and many inject toxicity
into our environment and compromise the long-term sustainability of agriculture.
The integrated ecosystem present in aquaponics (combining fish, vegetables, bac-
teria and worms) results in less disease and faster growth, removing the need for
agrochemicals and pharmaceuticals.

3Small scale aquaponics: (Somerville et al. 2014).

Hamish Cunningham 251

images/fao-ponics.png
images/aquaponics-nitrogen-cycle.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

4

10.1.2 Research Questions

The catch? Balancing the ecosystem is tricky, and we don’t know enough about
the optimum setups for cooler climates (or about the systems sizes that suit typical
UK greenhouses or sheds). Research questions we’re addressing to meet these
challenges include:

Connectivity. New-generation microcontrollers like ESP8266 and ESP32 bring a
mature wifi stack and modern micro compute resource to the existing Arduino
ecosystem, and WiFi is winning the Internet of Things (IoT) connectivity battle in
cases where power is easily available. In other cases LoRaWAN, Sigfox, LTE-M and
NB-IoT are all candidates vying for uptake. We’re combiningWiFi and LoRaWAN, and
developing multi-mode device provisioning that will work in both well-resourced,
WiFi and power-rich environments and in low resource economies where long range
low power radio is more appropriate.

Monitoring. Aquaponics relies on three interdependent sets of organisms (plants,
fish and nitrifying bacteria), all of which have to operate within certain parame-
ters. Monitoring water quality (pH, temperature), light levels (lux), and air quality
(temperature and humidity), and providing cloud-based data recording for produce

4Graphic courtesy of I. Karonent, adapted for aquaponics by S. Friend.

252 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

outputs, can make managing this balancing act easier and bring the technology in
reach of many more users.

5

Control. The bacterial populations that we rely on for converting ammonia to ni-
trates thrive in some types of hydroponic growth media that are highly oxygenated,
and the resultant combination of nitrate concentrations and oxygen also promote
high plant growth rates. A good way to create that type of environment is ebb
and flow (or flood and drain) irrigation, which requires solenoid control of growth
bed water flows. Industrial solenoids are expensive; we’re experimenting with sev-
eral cheaper valves appropriate to low resource environments and driving them via
MOSFET circuits. We also control lighting, air and water pumps using a 433 MHz
transmitter and COTS (commodity) mains switching devices which are widely avail-
able (and therefore remove the need to deal with mains voltages in our circuitry).

Analytics. Our connected devices interface with the new generation of IoT
cloudside logging, visualisation, event generation, platform integration and ana-
lytics (for example on Adafruit.io or IFTTT), along with lower-level data logging on
AWS-based cloud VMs that offer high-reliability (EBS) multiregion data storage. An
example dashboard:

5The DripDash cloudside control and analytics suite.

Hamish Cunningham 253

images/dripdash--2019-09-05.png
images/aqua-garden.png
images/aqua-garden.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

6

At the heart of the approach is an IoT device called the WaterElf, which pairs an
ESP32 microcontroller with environmental sensing (for lux, air and water tempera-
ture, humidity and water levels) and water flow control. The device is open hard-
ware supported by open source firmware on the unphone gitlab repository. An
example schematic:

6From Todmorden’s Incredible Edible aquagarden (now sadly closed).

254 Hamish Cunningham

images/aqua-garden.png
images/aqua-garden.png
https://gitlab.com/hamishcunningham/unphone
images/elf-schematic.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

WaterElf is an ESP32-based control, monitoring and communications device for
aquaponics. It combines several features characteristic of different greenhouse
control systems and water quality monitors used in aquaculture and hydroponics.
The latest version of the WaterElf features wireless sensors to measure pH, light
intensity (LUX), water temperature, air temperature and humidity as well as three
ultrasonic sensors that enable the monitoring of water levels in three growbeds
from a single device. A programme controlling the opening and closing of valves,
thereby regulating water levels, runs locally in the Elf. The timing of this is con-
trolled by the water level (high water levels sending a signal to stop the flow) – if
for any reason this signal does not come, filling of tanks will automatically stop after
15 minutes to prevent overflow.

Saving the world with fish poo plus electronics. You heard it here first :)

10.2 COM3505 Week 10 Notes

10.2.1 Learning Objectives

Our objectives this week are to:

• start preparing to test our knowledge of the theoretical material of the course
with a mock exam

• continue working on projects: two more weeks left! We recommend that you:

– iterate through design documentation, implementation, testing, progress
documentation

– keep checking in and pushing to GitLab

Hamish Cunningham 255

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

– always keep half an eye on your plan for documenting the work (how will
you show all of your projects functions? howwill youmaximise readability?
what should your video show?)

10.3 Further Reading

As noted in an earlier chapter, Adafruit’s “All the IoT” series has lots of useful back-
ground on IoT connectivity options. Hera are the Adafruit-hosted copies: - episode
1, transports - episode 2, protocols - episode 3, services - episode 4, Adafruit.io -
episode 5, security

More details on application-layer communication protocols:

• (Naik 2017) Choice of Effective Messaging Protocols for IoT Systems: MQTT,
CoAP, AMQP and HTTP, N. Naik, IEEE Xplore, 2017

• A Comparison of AMQP and MQTT, Raphael Cohn, StormMQ, Oasis Open lists,
accessed 2019 (note the author’s affiliation though!)

• (Dizdarević et al. 2019) A Survey of Communication Protocols for Internet
of Things and Related Challenges of Fog and Cloud Computing Integration, J
Dizdarevic et al, ACM Computing Surveys, 2019

• MQTT & IoT protocols comparison, Paolo Patierno, Microsoft Embedded Confer-
ence 2014

• See also various provider sources, e.g. Azure IoT protocol developer guide or
AWS IoT message broker

Cautionary tales:

• (Hunn 2018) UK smart meters

256 Hamish Cunningham

https://www.digikey.com/en/resources/iot-resource-center/videos
https://learn.adafruit.com/alltheiot-transports?view=all
https://learn.adafruit.com/alltheiot-transports?view=all
https://learn.adafruit.com/alltheiot-protocols?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-three-services?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-four-adafruit-io?view=all
https://learn.adafruit.com/all-the-internet-of-things-episode-five-the-s-in-iot-is-for-security?view=all
https://core.ac.uk/download/pdf/160743474.pdf
https://lists.oasis-open.org/archives/amqp/201202/msg00086/StormMQ_WhitePaper_-_A_Comparison_of_AMQP_and_MQTT.pdf
https://lists.oasis-open.org/archives/amqp/201202/msg00086/StormMQ_WhitePaper_-_A_Comparison_of_AMQP_and_MQTT.pdf
https://arxiv.org/pdf/1804.01747.pdf
https://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
https://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://www.nickhunn.com/british-smart-meters-cost-28-million-each/

11 unPhone Yourself!

Phones. They’re miraculous! Maps, cameras, streaming this that and the other…
and they even make phone calls. But: they use up scarce minerals (that are often
mined in peril). The server clouds they connect to use thousands of times more
energy than bitcoin. And they steal our attention, leak our data, compromise our
privacy. Perhaps we don’t need a miracle in our pockets every minute of the day?
Sheffield’s unPhone IoT platform isn’t a phone alternative but it has the potential
to replace some of the sledgehammers we currently crack nuts with (and it can be
a way to keep more of your data under your own control).

For students of the IoT, for makers and developers of novel devices, the unPhone
provides a rapid prototyping environment, made easier by the pre-integrated UI,
PMU1, accelerometer, LoRa radio and etc., with an expansion capability conforming
to Adafruit’s FeatherWing standard. Having prototyped a device on the unPhone,
the resultant circuit constitutes a stand-alone unit appropriate for productisation by
competent fabricators. The board is manufactured by Pimoroni in Sheffield UK, in
partnership with the University of Sheffield.
1PMU: Power Management Unit. Also BMU, Battery Management Unit, or BM, Battery Manager.

257

https://unphone.net/
images/unphone-platform-2.png
https://learn.adafruit.com/adafruit-feather/feather-specification
https://pimoroni.com/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(If the target hardware doesn’t include a screen etc., the unPhone-based prototype
can be trivially transferred to the relevant Feather microcontroller board (e.g. the
ESP32S3 feather using the expander board’s Feather-compatible sockets. The
screen is typically very useful during the development process to reduce reliance
on the serial lines for debug output and the like.)

Extensive documentation and integration with the Arduino, Espressif and PlatformIO
open source communities make getting up and running fast and lightweight. The
device can be programmed in C / C++ or CircuitPython.

The systems have also been the foundation of IoT courses for around 500 people
so far at the University of Sheffield, and at a more general level the work helps:

• reduce waste and energy consumption (we use microcontrollers not micropro-
cessors and we minimise cloud time)

• enable privacy (e.g. by building voice control systems which don’t send audio
outside the building, and don’t have binary blobs like your phone’s baseband
firmware)

Several research programmes are supported by the work, including tracks in IoT
devices for monitoring and control of aquaponics systems (Coleman 2014; Hamish
Cunningham and Kotzen 2015) (supported by a cloud-based data aggregation and
analytics infrastructure (Tablan et al. 2013) orginally developed as part of the GATE
architecture (H. Cunningham, Gaizauskas, and Wilks 1995; Hamish Cunningham et
al. 2002)). The hardware has contributed to projects including the Urban Flows
Observatory (Munir et al. 2019), the Pitch-In Connecting IoT Capabilities project
(Czekster et al. 2021), the unPrism and Vigil Auntie projects (Al-Mhabis and Cun-
ningham 2017; Rudd and Cunningham 2021a, 2021b, 2022) and the MYHarvest
urban agriculture database (J. Edmondson et al. 2019; J. L. Edmondson et al. 2020).
The COM3505 Internet of Things level 3 undergraduate course enters its 7th itera-
tion in Spring 2024.

This chapter tours the hardware and firmware programming environment of the
unPhone. (See Chapter 7 for the story of how we developed the device.) We focus
here on the device hardware (next section), the programming model, its power
consumption characteristics and the details of the circuitry it is built on. We finish
with a note on versions.

11.1 The Hardware

Lets begin with an overview of the various things that are part of the unPhone and
how they are connected to the microcontroller at the centre of it.

The unPhone has a USB C socket, that provides both power and a serial line con-
nection. When you connect power the on-board battery will automatically begin

258 Hamish Cunningham

https://learn.adafruit.com/adafruit-esp32-s3-feather
https://learn.adafruit.com/adafruit-esp32-s3-feather
https://arduino.cc/
https://espressif.com/
https://community.platformio.org/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

charging. When the USB is unplugged the battery will switch over and power the
unPhone. And if you plug your unPhone into a computer, you can program it and
interact with it.

The RGB LED can display 7 different colours, made by switching on or off each of
the red, green or blue parts. If you switch all three on at once, you get white; if you
mix red and blue you get purple, and mixing red and green gives yellow. There’s
also a red charging LED underneath the USB socket, which is on when the battery
is being charged.

The reset button is connected to the microcontroller’s reset circuit - this will always
reboot the device. It’s set into the end so you’ll need a pencil or paperclip or etc.
to press it.

The micro SD card slot can be read by the microcontroller. It has a push-push type
socket where the card goes into the slot, and out again by pushing it in gently.

The IR (infra-red) LED isn’t visible, but sends remote control codes to TV’s, hi-fi’s
etc. You can use this to turn off annoying TV’s nearby, for example!

The on/off slide switch turns the unPhone off and on. Even when turned off, the
battery will still charge if USB is plugged in. And you can control this yourself in
your programs, to make the unPhone wake up even when it’s turned off. This is
useful if you want to save battery power and wake up every few minutes to check
something, for example.

The three push buttons above the screen have a tactile feeling, so they can be
operated in your pocket.

As well as the usual Wi-Fi and Bluetooth radios, the unPhone has an ultra-low power
long range radio that uses the LoRa European frequency (868 MHz). It’s compati-
ble with The Things Network LoRaWAN system, with gateways all round the world
(including Sheffield!). This radio has many hundreds of meters of range, probably
more, but a very low bandwidth. So you can’t stream music, let alone video. But
you can send and recieve messages, alerts, sensor readings etc.

The gyroscope sensor gives accurate measurements of the movements of the un-
Phone. It can be used for various things such as a step counter, a spirit level or
gesture control (e.g. change screens on an interface when the unPhone is tilted).

The vibration motor gives a gentle buzz that is barely audible but can be felt, suit-
able for notifications or alarms.

Touchscreen gives a bright clear display with 640x480 pixels; and the touch pres-
sure can be felt, so a drawing program can draw a thin line with light pressure and
a thicker line with more pressure for example.

The built-in battery has a capacity of 1400 mAh - so will power the unPhone for
around 6 hours or so, with the screen on and using WiFi or LoRaWAN heavily. The
screen backlight is the most power hungry item, so if you can program a sleepmode

Hamish Cunningham 259

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

that turns it off, you can easily double the battery life. Using the radio’s less will
also reduce power consumption.

And if you want to connect two Adafruit Featherwing expansion boards, and / or
add some more components to the unPhone, you can use the expansion shield. It
exposes all the normal Feather pins so you can just plug in your chosen Featherwing
and go!

11.2 Programming the unPhone

This section describes the C++ programming model of the unPhone using several
example applications. For the latest code, build environment recommendations
and troubleshooting tips see the library’s GitLab repository. (To program in Circuit-
Python see Appendix B.)

Before we begin it is worth remembering the number one truism about the IoT and
about devices based on microcontrollers: they’re small! The game is to make them
as small as they can be while still performing their intended task. (This is quite
different from general purpose computing, where we try to build devices that are
appropriate for any computational task, or at least any task which doesn’t require
distributed computing to succeed.) The pressure to be as small as possible in the IoT
means programming machines that are very like computers were several decades
ago, and we often end up using programming idioms and tools that are similarly
venerable. So: the terrain is rough, there’s not much space for acrobatics and
we’ve only our wits to sustain us :)

Which is a long-winded way of saying:

• timing is critical – don’t be surprised if changing the way a task is performed
suddenly breaks another task!

• memory is scarce – don’t waste it!
• there are 10,000 ways to break things – don’t sweat, just start from a known
good and move slowly and carefully :)

11.2.1 Class unPhone, and minimal example

In common with the ESP32 family and many other microcontrollers, sensors and
actuators the unPhone is supported by an Arduino library that provides a hardware
abstraction packaged as a C++ class that follows certain conventions. Its declara-
tion starts like this:

1 class unPhone {
2 public:
3 unPhone(); // construction

260 Hamish Cunningham

https://gitlab.com/hamishcunningham/unphonelibrary
https://iot.unphone.net/#appendix-b-circuitpython-on-feather-s3-and-unphone
https://iot.unphone.net/#appendix-b-circuitpython-on-feather-s3-and-unphone

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

4 unPhone(const char *); // construction with app
name

5 static unPhone *me; // access singleton in static context after
constr

6 void begin(); // initialise hardware
7 ...

These first methods deal with creating an unPhone object (with an optional applica-
tion name), accessing that object from static contexts (after construction, via the
me member variable), and initialising the hardware (with the begin method).

The unPhone class is intended to be singleton, i.e. we should only ever construct
one object of the type. (There’s only one piece of hardware running the firmware
instance, after all!)

The most common way to create an application for the unPhone is to write an Ar-
duino sketch that instantiates the unPhone class. Several examples of this are
available in the library’s examples/ directory. The simplest is called minimal:

1 #include "unPhone.h" // pull in class definition
2 unPhone u = unPhone("minimal"); // construct an unPhone

object
3 void cycleLeds(); // helpers to cycle RGB LED

...
4 void printLEDPins(); // ...and debug print the

pins
5
6 void setup() { // the Arduino code calls this once

/////////////////////
7 Serial.begin(115200); // enable serial printing
8 D("\nin setup(), doing unPhone begin()...\n\n") // say hello in

serial
9 printLEDPins(); // print out LED pindefs
10 u.begin(); // initialise unPhone

hardware
11 u.backlight(false); // no UI: turn backlight off
12 D("\ndone with setup()\n\n")
13 }
14
15 void loop() { // the Arduino code calls this in an infinite loop

///////
16 u.ir(false); cycleLeds(); // cycle through RGB, no IR
17 u.ir(true); cycleLeds(); // cycle through RGB, IR on
18 u.ir(false);
19 D("\nrepeat\n") // once more from the top...
20 }
21 ...

We construct an unPhone object called u, initialise the serial line (for debug
statements) and print out some diagnostic information. (The D macro be-
haves like C’s printf function, and can be excluded from the build by defining
UNPHONE_PRODUCTION_BUILD as a compile flag.)

The call to u.begin() sets up everything that we need to operate the device, from
the I²C bus to the SD card. It also creates FreeRTOS tasks that take care of power

Hamish Cunningham 261

https://gitlab.com/hamishcunningham/unphonelibrary/-/tree/main/examples

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

management, LoRa radio, factory test mode and UI event servicing.

(The library includes UI zerowhich is a simple GUI built on Adafruit’s excellent GFX. It
can be turned off by setting an UNPHONE_UI0=0 compile flag, and this is done in minimal.
The setup()method finishes by turning off the LCD backlight as is isn’t needed when
there is no UI running.)

The loop()method cycles through the various colour options of the RGB LEDs, while
also toggling the IR LEDs.

This is pretty much the simplest illustration of how to program the unPhone. Below
we’ll look at more interesting examples, but first let’s explore the unPhone class a
little more.

11.2.1.1 Pindefs

After a couple of utility methods, the class declaration continues like this:

1 uint8_t version(); // hardware revision
2 const char *getMAC(); // the ESP MAC address
3
4 // pindefs for version 7 omitted; version 9+ pindefs:
5 static const uint8_t LCD_RESET = 46;
6 static const uint8_t BACKLIGHT = 2 | 0x40; // 0x40 = on

TCA9555
7 static const uint8_t LCD_CS = 48; // CS = SPI chip select
8 static const uint8_t LCD_DC = 47; // DC = data or command
9 static const uint8_t LORA_CS = 44;
10 static const uint8_t LORA_RESET = 42;
11 static const uint8_t TOUCH_CS = 38;
12 static const uint8_t LED_RED = 13;
13 static const uint8_t POWER_SWITCH = 18;
14 static const uint8_t SD_CS = 43;
15 static const uint8_t BUTTON1 = 45; // left button
16 static const uint8_t BUTTON2 = 0; // middle button
17 static const uint8_t BUTTON3 = 21; // right button
18 static const uint8_t IR_LEDS = 12; // the IR LED pins
19 static const uint8_t EXPANDER_POWER = 0 | 0x40; // enables exp brd
20
21 static const uint8_t VIBE = 7 | 0x40;
22 static const uint8_t LED_GREEN = 9 | 0x40;
23 static const uint8_t LED_BLUE = 13 | 0x40;
24 static const uint8_t USB_VSENSE = 14 | 0x40;

This long list of constants gives pin definitions that map from the ESP32’s connec-
tions to the various peripherals that are wired up to it. For example, the power
switch is connected (in version 9) to GPIO 18 on the ESP32S3 microcontroller. (Pins
that are OR’d with 0x40 set bit 7 high, and are used when talking to peripherals that
are connected to the unPhone’s TCA9555 chip – see below.) To accomplish simple
tasks like turning the GREEN LED on, we can use digitalWrite(unPhone::LED_GREEN,
HIGH), for example, though note that the class provides shortcut methods for this
type of task. They’re mostly self-explanatory:

262 Hamish Cunningham

https://learn.adafruit.com/adafruit-gfx-graphics-library

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

1 bool button1(); // register...
2 bool button2(); // ...button...
3 bool button3(); // ...presses
4
5 void vibe(bool); // vibe motor on or off
6 void ir(bool); // IR LEDs on or off
7 void rgb(uint8_t red, uint8_t green, uint8_t blue); // RGB LED

The RGB LED is controlled via the rgb(int, int, int) method. For example rgb(1, 0,
0) will light the red LED, rgb(0, 1, 0) the green, and so on.

11.2.1.2 Power management task helpers

The methods related to power are used to implement powerSwitchTask(), which is
scheduled by FreeRTOS to manage power states (next section).

1 bool powerSwitchIsOn(); // is power switch turned on?
2 bool usbPowerConnected(); // is USB power connected?
3 void checkPowerSwitch(); // if pwr switch off, shut down
4 void turnPeripheralsOff(); // shut down periphs
5 void wakeOnPowerSwitch(); // wake interrupt on pwr switch
6 void printWakeupReason(); // what woke us up?

11.2.1.3 UI0 helpers

If the compile flag UNPHONE_UI0 == 1 then the UI controller class can be accessed via
the uiCont member, and redrawing and event servicing performed with the redraw()
and uiLoop() methods:

1 void *uiCont; // the UI controller
2 void redraw(); // redraw the UI
3 void provisioned(); // call when provisioning done
4 void uiLoop(); // allow the UI to run
5 void recoverI2C(); // deal with I2C hangs

11.2.1.4 Touch, display, acceleration

The display and touchscreen hardware are accessed via the tftp and tsp pointer
members (TFT stands for thin-film transistor, which in this case is the type of LCD
display the unPhone contains). The accelerometer is available at accelp and should
be queried with the getAccelEvent method.

1 // the touch screen, display and accelerometer /////////////
2 Adafruit_HX8357 *tftp; // UI0 uses Adafruit LCD lib
3 XPT2046_Touchscreen *tsp;
4 Adafruit_LSM6DS3TRC *accelp;
5 void getAccelEvent(sensors_event_t *); // accelerometer
6 void backlight(bool); // backlight on or off

Hamish Cunningham 263

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

7 void expanderPower(bool); // expander board power on/off

An example of using the accelerometer is provided in unPhoneLibrary/examples/ev-
erything, a sketch that exercises almost all of the device’s capabilities. The ac-
celerometer allows us to determine the unPhone’s physical orientation; Gareth used
it to program an Etch-a-Sketch game:

The method for querying the accelerometer works by passing through a pointer to a
sensor_event_t type, which is defined by the Adafruit Unified Sensor library. This is a
common idiom in memory-constrained C and C++ programming, where the caller
of a method that returns non-trivial data first allocates the memory to store that
data and then passes its address through to be written into. For example, from the
UI0 implementation as used in the everything sketch:

1 sensors_event_t event; // allocate memory for accel reading
2 up->getAccelEvent(&event); // get the reading (up: unphone ptr)
3 // now we can get x, y, z etc. from the reading:
4 if(event.acceleration.x ...

Details of the sensor_event_t data type are available here. (Aren’t Adafruit wonder-
ful?!)

11.2.1.5 SD cards, LoRa

The SD card is acesssible via the sdp member

1 SdFat *sdp; // SD card filesystem

The unPhone’s LoRa radio module can be used to send short messages over long
distances. A FreeRTOS task (unLoopTask) that services LoRa transactions is fired up
by unPhone::begin(), which uses the loraSetup() and loraLoop() methods, after which

264 Hamish Cunningham

https://gitlab.com/hamishcunningham/unphonelibrary/-/tree/main/examples/everything
https://gitlab.com/hamishcunningham/unphonelibrary/-/tree/main/examples/everything
https://en.wikipedia.org/wiki/Etch_A_Sketch
images/etch-a-sketch.jpg
https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver?view=all
https://gitlab.com/hamishcunningham/unphonelibrary/-/blob/main/unPhoneUI0.cpp
https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver/how-does-it-work#sensors-event-t-sensor-data-161311

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

messaging is available via loraSend, which behaves like printf. For example, from
the everything sketch:

1 u.loraSend("UNPHONE_SPIN=%d MAC=%s", UNPHONE_SPIN , u.getMAC());

This will send a message to The Things Network something like this UNPHONE_SPIN=9
MAC=7CDFA1FDFCE4. The maximum length of the interpolated string payload is defined
by unPhone::LORA_PAYLOAD_LEN and should not be exceeded.

1 // LoRa radio
2 void loraSetup(); // init the LoRa board
3 void loraLoop(); // service lora

transactions
4 void loraSend(const char *, ...); // send TTN LoRaWAN

message
5 static const uint8_t LORA_PAYLOAD_LEN = 101;// max payload bytes (+

'\0')

11.2.1.6 PMU API

Power management is a complex task! The work is taken care of in powerSwitchTask;
see next section for the gorey details. The pindefs for the power management chip
(known variously as PMU, BMU or just BM2) and associated API are as follows:

1 // power management chip API
2 static const byte BM_I2CADD = 0x6b; // the chip lives here on I²C
3 static const byte BM_WATCHDOG = 0x05; // charge end/timer cntrl

register
4 static const byte BM_OPCON = 0x07; // misc operation control reg
5 static const byte BM_STATUS = 0x08; // system status reg
6 static const byte BM_VERSION = 0x0a; // vendor/part/revision status

reg
7 float batteryVoltage(); // get the battery voltage
8 void setShipping(bool value); // tells BM chip to shut down
9 void setRegister(byte address, byte reg, byte value); //
10 byte getRegister(byte address, byte reg); // I²C...
11 void write8(byte address, byte reg, byte value); // ...helpers
12 byte read8(byte address, byte reg); //

Of these only batteryVoltage() is likely to be useful for most unPhone programmers.

11.2.1.7 Small data store and other utils

We quite often want to store small amounts of data to persist between invocations
of our firmware, and the unPhone class finishes with a little API to facilitate this, built
on top of the Preferences API:

1 // a small, rotating , persistent store (using Preferences API)
2 void beginStore(); // set up store area

2PMU: Power Management Unit. Also BMU, Battery Management Unit, or BM, Battery Manager.

Hamish Cunningham 265

https://www.thethingsnetwork.org/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

3 void store(const char *); // save a value
4 void printStore(); // play back list of strings
5 void clearStore(); // clear (doesn't empty nvs!)
6 static const uint8_t STORE_SIZE = 10; // max strings; must be <=255/2
7
8 // misc utilities
9 const char *appName; // name for the firmware
10 const char *buildTime; // build date
11 ...

In the everything example we use it like this:

1 u.store(u.buildTime); // remember firmware build date
2 ...
3 u.printStore(); // print out stored messages

(The unPhone library also stores details of power states and wakeup reasons, which
will also be printed by printStore here.)

11.2.1.8 The TCA9555

As well as class unPhone we have class unPhoneTCA, which models the device’s
TCA9555 IO expansion chip that is controlled over I2C and to which the SPI chip
select (CS), reset and etc. lines of many of the modules were connected in versions
before spin 9. From 9+ only the LEDs, expander board power and the vibration
motor are on the TCA. To use these connections the IO expander has to be told to
trigger those lines. This meant that the available libraries for the modules also
needed to be adapted to talk to the TCA, e.g. when doing digitalWrite or pinMode.
We did this by injecting code to call our own versions of these functions (defined
below) and setting the second highest bit of the pin number high to signal those
pins that are controlled via the TCA9555. In later versions we don’t need to patch
the libraries any more, as only our own code is talking to the TCA. In any case, the
unPhoneTCA class manages the chip. (It used to be called IOExpander but was renamed
to prevent confusing it with the unPhone expansion board, an additional PCB that
connects to the main board by ribbon cable.)

1 class unPhoneTCA {
2 public:
3 static const uint8_t i2c_address = 0x26; // the TCA9555's I²C addr
4 static uint16_t directions; // cache current state of ports...
5 static uint16_t output_states; // ...after read during init
6 static void begin();
7 static void pinMode(uint8_t pin, uint8_t mode);
8 static void digitalWrite(uint8_t pin, uint8_t value);
9 static uint8_t digitalRead(uint8_t pin);
10 ...
11 };

266 Hamish Cunningham

https://www.ti.com/product/TCA9555

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

11.2.1.9 Debug and timing macros

Lastly, there are a couple of convenience macros for printing to serial and for calling
delay for particular periods:

1 // macros for debug (and error) log/printf, and delay/yield/timing
2 #ifdef UNPHONE_PRODUCTION_BUILD
3 # define D(args...) (void)0;
4 #else
5 # define D(args...) printf(args);
6 #endif
7 #define E(args...) printf("ERROR: " args);
8 static const char *TAG = "MAIN"; // ESP logger debug tag
9 #define WAIT_A_SEC vTaskDelay(1000/portTICK_PERIOD_MS); // 1 sec
10 #define WAIT_SECS(n) vTaskDelay((n*1000)/portTICK_PERIOD_MS); // n

secs
11 #define WAIT_MS(n) vTaskDelay(n/portTICK_PERIOD_MS); // n

milli

11.2.2 The UI0 and LVGL interfaces

The unPhone library includes UI zero a simple example user interface built on
Adafruit’s GFX (graphics) and implemented in unPhoneUI0.h and unPhoneUI0.cpp.
To enable it, set a UNPHONE_UI0=1 compile flag. The everything example, referred to
above uses UI0 and is a good source of usage examples.

11.2.2.1 LVGL

An alternative to GFX, with a much richer (and more complex) set of UI elements, is
LVGL, a Light and Versatile Graphics Library. The examples/lvgl sketch runs an very
impressive LVGL demo that looks like this (without the pointer and a bit slower!):

Hamish Cunningham 267

https://learn.adafruit.com/adafruit-gfx-graphics-library
https://gitlab.com/hamishcunningham/unphonelibrary/-/blob/main/unPhoneUI0.h
https://gitlab.com/hamishcunningham/unphonelibrary/-/blob/main/unPhoneUI0.cpp
https://gitlab.com/hamishcunningham/unphonelibrary/-/tree/main/examples/everything
https://lvgl.io/
https://gitlab.com/hamishcunningham/unphonelibrary/-/tree/main/examples/lvgl-demo

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

On the unPhone:

(Note that this doesn’t run on unPhone 7 unfortunately, too big to fit!)

268 Hamish Cunningham

images/lvgl-demo-2.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

11.2.2.2 UI0; adding a screen

In UI zero we display an arrow on each screen that can be used to navigate between
different elements of the interface. The menu of different screens looks like this:

To add a new screen to the UI and the menu, take these steps:

• in unPhoneUI0.h:

– add a new member of the UI modes enumeration: enum ui_modes_t { ...,
ui_mynewelement, ... }

– declare a subclass of UIElement, e.g. class MyNewUIElement: public UIElement
{ ...

• in unPhoneUI0.cpp:

– increase NUM_UI_ELEMENTS by one
– add a name for the element to ui_mode_names, e.g. “My new UI screen” and
add this to modeName(), e.g. case ui_mynewelement: return "ui_mynewelement";
break;

Hamish Cunningham 269

images/ui0-menu.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

– allocate storage for your element in allocateUIElement(), e.g. case ui_testrig
: m_element = new MyNewUIElement(up->tftp, up->tsp, up->sdp); break;

– implement the methods of the new UIElement subclass, e.g. void
MyNewUIElement::draw(){ ...;

This should now appear on the UI zero menu screen. (For a detailed example, see
this commit.

11.3 Power Consumption States

One of the design goals for almost all IoT devices is to minimise power consumption.
The unPhone’s consumption ranges from around 50 microwatts (µW) when hiber-
nating up to a typical runtime of around 500 milliwatts (mW). For comparison, Pete
Warden summarises typical smartphone runtimes (following (Tarkoma et al. 2014))
as in the thousands of milliwatts (mW)3.

The unPhone includes a battery and power management unit (PMU) with integral
LiPo charging and several different power states that controlled using the on/off
slider switch at the end (which is “on” when slid closest to the nearest edge of the
case and “off” when nearest to the center).

When the device is ON all internal functions are available, and the device will draw
power from USB if available or battery if not.

When the device is turned off, there are three states:

• OFF (no USB power): the PMU goes into shipping mode and all hardware is
powered down (and there is notionally no power; version 7 leaks around 0.8mA
in this state)

• SLEEP (USB power connected): the PMU will charge the internal LiPo, but the
ESP32 is put into deep sleep, the backlight turned off and expansion board
power turned off

3

• ”An ARM A9 CPU can use between 500 and 2,000 mW.
• A display might use 400 mW.
• Active cell radio might use 800 mW.
• Bluetooth might use 100 mW.
• Accelerometer is 21 mW.
• Gyroscope is 130 mW.
• Microphone is 101 mW.
• GPS is 176 mW.
• Using the camera in ‘viewfinder’ mode, focusing and looking at a picture preview, might use
1,000 mW.

• Actually recording videomight take another 200 to 1,000mW on top of that.” (Warden, 2015)

270 Hamish Cunningham

https://petewarden.com/2015/10/08/smartphone-energy-consumption/
https://petewarden.com/2015/10/08/smartphone-energy-consumption/
https://petewarden.com/2015/10/08/smartphone-energy-consumption/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• HIBERNATE (USB power disconnected): the PMU goes into shipping mode,
and no power will be supplied until USB power is reconnected or the device is
turned on

Power draw in these different states is approximately as follows (measured at Uni
Sheffield using an INA219 Featherwing, an EEVBlog mCurrent Gold, and again using
an N27GG bench PSU; we further verified the figures using an IDS1054B scope at
Pimoroni):

• ON: up to 500mA @ 3.3V, or 200mA typical load (of which 100mA is the LCD
back light)

• OFF: 15 microamps @ VBAT (which equates to something approaching a
decade of standby time!)

• SLEEP: < 10 milliamps (or around 400mA when charging a low battery, @
VUSB4; every few seconds external power is checked, and if dinsconnected
then we transition to OFF)

(When working with the expansion board, note that its power supply must be en-
abled in software: unPhone::expanderPower(true).)

4Note: in spin 7 a bug with the VBAT connection means that shipping mode power draw was 0.8
milliamps! This was fixed in later versions.

Hamish Cunningham 271

https://www.adafruit.com/product/3650
https://www.eevblog.com/product/ucurrentgold/
https://uk.rs-online.com/web/p/oscilloscopes/1233540

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

(Battery neutral)

unPhone power states

Sleeping

Running

(Battery charging)

ShippingOFF

Running

(Battery draining)

(Battery charging)

Switch ONSwitch OFF Switch ONSwitch OFF

Plug in USB

Unplug USB
ON

OFF Checking

(Battery charging)

Checking

(Battery draining)

Plug in USB
Unplug USB

Figure 11.1: Diagram of unPhone power states

The diagram above shows six states that the unPhone can be in, depending on
the position of the power switch, whether USB power is connected or not, and also
whether the user code has chosen for the unPhone to sleep or not.

Although the top four states are different in that the battery is either being charged
or drained during them, they are also similar in that your code runs in exactly the
same way in both the sleep states and running states. The battery charging is
managed entirely by the PMU (Power Management Unit - the BQ24295 chip in the
unPhone) and doesn’t require any programming to support it’s operation.

The arrows on the diagram show what actions can be taken, and which power state
the unPhone will be in if that action is taken. If you want to change two things at

272 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

once, sorry, you can’t! You have to do one change and then another - the unPhone’s
clock ticks at 240 million times a second - so even if you think you have unplugged
the USB at exactly the same time as switching the power switch - in reality you
won’t be able to get them that close!

Let’s say we start with the power switch in the ON position, and USB power con-
nected. We will press the reset button so that we know things are starting at the
beginning of our code.

The unPhone is now in the Running state at the left of the diagram. The battery is
charging - or if it is already fully charged, then it’s kept fully charged.

Suppose we now disconnect the USB cable, and the power that comes along it. We
follow the Unplug USB arrow and see that we are still in the Running state - only
now the battery is draining to power the unPhone. We don’t have to pay attention
to this, because the PMU handles the switchover from USB power to battery power
for us. If you want to find out which of the Running states we are in, you can do
that by using the function usbPowerConnected() like this:

1 if (unPhone::usbPowerConnected() == true) {
2 Serial.print("We are connected to USB and charging the battery");
3 } else {
4 Serial.print("We are not connected to USB and draining the battery")

;
5 }

Now we are running on battery power, we might want to save some power and
sleep for a while. That way instead of running at full power for a few hours, we can
sleep for a bit, wake up, do something, then sleep again. We can run for weeks
or months that way – because sleeping uses only a tiny amount of power. We can
go to sleep using the built in function esp_sleep_enable_ext0_wakeup(). When we use
this function, we must tell it how we want to be woken up – otherwise we will sleep
forever! We can use it like this:

1 esp_sleep_enable_ext0_wakeup(unPhone::BUTTON1, 1);
2 esp_deep_sleep_start();

In the first line, we are calling the sleep_enable function, and setting the wake-up
to be when we press button 1(the left button). The 1 at the end says that we want
to be woken up when the switch is pressed.

The second command, esp_deep_sleep_start(); will immediately make the unPhone
will enter a sleeping state. Because we are still disconnected from USB, the battery
is powering the unPhone - but whilst sleeping it will last for weeks. The chip is
powered down and isn’t running code, connecting to wifi or anything else (but see
below for subtleties!).

You can see that from this state, there are three possible arrows that show which
states we can go to next. We can wake up from sleep by pressing button 1 - in
which case our code will start running from the next line after we went to sleep.

Hamish Cunningham 273

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

At an implementation level, the key method is unPhone::checkPowerSwitch method,
which does this:

1 if power switch off
2 turnOffPeripherals
3
4 if USB power off
5 go to shipping mode
6 else
7 enable wakeup on power switch
8 enable wakeup on 60 second timer
9 go to deep sleep

The method is called like this:

• when setup runs (on boot or wakeup from deep sleep), we call checkPowerSwitch
(so that if the power switch is off, and e.g. we’ve woken up because of a timer
call or because USB power has been connected, we can go straight back to
either sleep or shipping)

• a FreeRTOS task runs to regularly call checkPowerSwitch
• in addition a wakeup timer periodically brings us out of deep sleep so that

checkPowerSwitch will then choose deep sleep or shipping appropriately based
on whether USB power is connected

This means that when the device boots with the switch off, due to the transition
out of shipping when USB is (newly) connected, our call to checkPowerSwitch will put
it into deep sleep.

In addition we wake from deep sleep periodically in order to check that USB is still
connected, and if not, then move to shipping mode (so that we minimise battery
draw when charging isn’t available).

This means that with the switch off we are always in either deep sleep or shipping
mode, except for momentary transitions caused by USB connect / disconnect.

The charge LED indicates status like this:

battery connected USB connected charge LED

yes yes on if charging

yes no off

no yes flickers

274 Hamish Cunningham

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

11.4 A Tour of the Hardware Schematics

This section describes the various elements of the unPhone, with reference to the
unPhone9 hardware schematics (PDF; individual page images appear below).

NOTE: the next section describes unphone 6v2, but the general principles and
many of the specifics also apply to later versions. (More details on versions are
below.)

11.4.1 The ESP32 and Core Modules

The unPhone device has an ESP32 microcontroller at the centre, so let’s start our
look at the schematic there. The ESP32 is the large block on the left side:

In addition to all the GPIO pins connected to various other chips, there are some
‘housekeeping’ type connections as well. Rather than drawing long lines all around
the schematic connections are labled and you have to remember that pins with the
same label are connected together. Naturally the ESP32 has power pins to give
it 3.3V 3V3 and ground GND. It also has a set of six pins that connect to the flash
memory, and another pair that connect to the USB serial. There is a reset pin RESET
that has a small capacitor linked to it to give a small delay to ensure the chip starts
up cleanly. There are a pair of transistors also connected to the reset and GPIO0 lines,
linked to the programming pins used when burning firmware onto the ESP32. This
ensures that the chip can be put into programming mode and reset afterwards to
boot normally.

The USB to serial chip used is a CP2104, shown on the lower right hand side, which
provides a USB interface on one side for your computer, and a UART connection
together with control of the reset and programming pins of the ESP32 on the other.
It allows for serial communications in both directions during normal operation, and
the uploading of new firmware in programming mode. The CP2104 needs a couple

Hamish Cunningham 275

https://gitlab.com/hamishcunningham/unphone/-/raw/master/doc/spin9/unphone_spin9b.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://gitlab.com/hamishcunningham/unphone/-/raw/master/doc/unphone-spin6v2-schematic-1.png
https://www.silabs.com/documents/public/data-sheets/cp2104.pdf

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

of capacitors near the chip to help provide a steady power supply. (As many chips
switch very quickly, they can create electrical noise on the power supply wires. As a
result, most if not all chips have a capacitor or two very close to them, to decouple
this noise from other parts of the circuit.)

The LoraWAN radio module on the lower left hand side is the RFM95W – and this
connects to the ESP32 using the SPI bus together with a couple of additional GPIO
lines. These extra lines allow the radio to signal when it has data to be received.
Again, the radiomodule has a decoupling capacitor, and because it’s a radiomodule,
a connection for an antenna. Cunning board design from the Pimoroni peoplemeans
this antenna fits beautifully into a little cut-out at the top of the board.

The accelerometer and gyroscope chip is an interesting device and the way we’ve
used it is also unusual. Two similar chips are shown on the schematic at the top
and centre, the LSM9DS1 or the LSM303DLHC. Only one of these chips is actually
fitted during manufacture, and they both connect using I2C and have the usual
decoupling capacitors.

(Whilst building the device, we discovered that the LSM303DLHC sensor we had
been using was becoming obsolete. The rate of development in these MEMS sen-
sors in particular has been very rapid over the last few years, so a part that was
brand new and exciting in 2013 is replaced by cheaper and better alternatives five
years later. Pimoroni were able to source some of the remaining parts of the older
model, but as insurance they also designed a place on the PCB to take the alterna-
tive part. That way, the same circuit board could be used with either sensor.)

The I2C expander at the top right of the schematic is an I2C device that provides
additional GPIO pins – in our case we are using the TCA9555 which gives us 16
additional GPIO pins. An interupt pin is also provided, and connected to the ESP32
to allow us to respond (even waking up from deep sleep) when a device connected
to the expander changes state. The expander is connected in turn to:

• the screen reset TFT_RST and backlight BACKLIGHT_EN
• the RGB led LEDR, LEDG, LEDB
• the lora module reset LORA_RST
• chip select pins (to arbitrate the shared use of the SPI bus)

– screen LCD_CS
– lora module LORA_CS
– the touch sensor TOUCH_CS
– the SD card SD_CS

also connected to the expander are: - one of the three buttons SWITCH1 - the power
switch POWER_SWITCH_BUFFERED - a connection to the usb power USB_VSEN_BUFFERED

The final three expander GPIO’s are used to set the version – in this way the same
codebase can be used on the ESP32 and by interrogating the value of the three

276 Hamish Cunningham

https://www.hoperf.com/data/upload/portal/20190801/RFM95W-V2.0.pdf
https://shop.pimoroni.com/pages/about-us
https://www.st.com/resource/en/datasheet/DM00103319.pdf
https://www.st.com/resource/en/datasheet/DM00027543.pdf
http://www.ti.com/lit/gpn/tca9555

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

version bits we can programmatically tell which version of the unPhone we are
running on.

Like many I2C devices, it has some address pins which can be connected to ground
or 3.3V to set the I2C address of the device. In this case we are setting pin A0 to
ground and pins A1 and A2 to 3.3V – which sets the device address to be 0x24 (24
in hexadecimal – 36 in decimal).

A couple of additional devices are shown on the first page of the schematic - the
vibration motor and the Infra-red LED’s. They are both high-current devices and
so they are connected to the ESP32 via a MOSFET switch. This is a transistor that
takes a tiny signal voltage and switches a much larger current – the ESP32 can’t
supply much current directly. There is also a snubber diode across the vibration
motor as it is a coil and generates high voltages when suddenly disconnected. The
snubber diode provides a discharge path if high voltages build up in the motor coil
and protect the MOSFET.

11.4.2 The LCD and Touch Screen

On page 2 of the schematic we have the screen and associated driver circuitry
(the HX8357) – the screen is connected with SPI as it needs relatively high data
rates. The touch sensor that’s integrated at the front of the LCD uses the STMPE610
driver with it’s own SPI connection to the ESP32 – and so needs it’s own Chip Select
connection. In addition the SD card socket is connected to SPI – you can see that
no additional components are required – an SD or micro-SD card connects directly
to the SPI bus.

The backlight chip generates the higher voltage needed for the white leds behind
the touchscreen – and is triggered by the BACKLIGHT_EN signal. The backlight chip
handles generating the 20 or so volts from the 3.3V provided to it – and also provides
a constant current to the backlight to make sure the LED’s are well lit but don’t burn
out.

Hamish Cunningham 277

http://www.everlight.com/file/ProductFile/IR26-51C-L110-TR8.pdf
https://www.onsemi.com/pub/Collateral/BSS138-D.PDF
https://www.onsemi.com/pub/Collateral/NSR0530H-D.PDF
https://gitlab.com/hamishcunningham/unphone/-/raw/master/doc/unphone-spin6v2-schematic-2.png
https://cdn-shop.adafruit.com/datasheets/HX8357-D_DS_April2012.pdf
https://cdn-shop.adafruit.com/datasheets/STMPE610.pdf

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

11.4.3 Power Management

The final page 3 of the schematic shows some power management chips, a buck
voltage converter which takes the 5V and generates 3.3V and a buffer chip to en-
sure that voltages higher than 3.3V don’t go to the ESP32. We are using a BQ24295
battery management chip to manage the LIPO battery as this is a critical function
and also has safety implications. (Pimoroni have extensive experience with this
chip and it has been proven in practice in diverse applications.) The BQ24295 con-
nects to the ESP32 using I2C and can report on the state of the battery, any error
conditions and how much power can be drawn using USB. It can also be instructed
to enter ‘shipping mode’ which completely disconnects the battery from the circuit
to prevent the battery discharging during shipping. We are using it to minimise
power draw – an ultra deep sleep.

11.5 A Note on Versions

There have been nine prototypes so far (of which only 7 and 9 are current as of late
2022):

• 0: one of the breadboard variants
• 1: the bare feather/featherwing TS/TFT (3.5”)
• 2: first Pimoroni prototype (board spins 1 and 2)
• 3: second Pimoroni prototype (board spins 3 and 4)
• 4: FCS: used for COM3505 2018 (spin 4)
• 5: prototype for second production version (no audio now) (spin 5)
• 6: second production (of which rev 2 is the only extant version) (spin 6v2)
• 7: Q1/Q2 2022 / iteration 5 of the IoT course, with an original ESP32 MCU
• 8: the same as 7, but with an ESP32-S3; small volumes only
• 9: a major rework to take advantage of the ESP32-S3, released Q1 2023

278 Hamish Cunningham

https://gitlab.com/hamishcunningham/unphone/-/raw/master/doc/unphone-spin6v2-schematic-3.png
http://www.ti.com/lit/gpn/bq24295

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

This document describes spin 9, the first retail version.

11.6 COM3505 Week 11 Notes

11.6.1 Learning Objectives

Our objective this week and next is to finish, commit and push the project work.
Good luck!

Hamish Cunningham 279

12 Gateway to the Future

There are two dishes on the dessert menu.

First, as is frequently noted in the literature, you can’t say “IoT” without mentioning
the network, and we’ll fill in one of the blanks in our earlier discussions of connec-
tivity by summarising the more common examples of off-board communications
protocols.

Second, we promised right back in Chapter 1 to return to the subject of hope, and
so we will do.

12.1 Non-Local Communications Protocols

We build our things using local protocols (or buses) to integrate their sensors and
actuators (e.g. UART, SPI, I2C) — we saw examples of these in chapter 5. We get
our things connected using network transports, and get them talking to each
other (or to gateways or to the cloud) using network protocols.

Adafruit’s IoT video series (see section 10.3) is excellent on transports (and their
key criteria of “power, distance and bits”), including:

• micro-hop, or Personal Area Network (PAN) transports:

– Bluetooth
– RFID, NFC
– 433 MHz radio
– ZigBee, Z-Wave

• short-hop, or Local Area Network (LAN) transports:

– Ethernet
– WiFi

• long-haul, or Wide Area Network (WAN) transports:

– cellular
– satellite
– LoRa and LoRaWAN
– SigFox
– LTE-M, NB-IoT

281

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Transports deliver bits between devices, and between devices and gateways or
devices and the cloud. Transports are like the telegraph, or smoke signals: they
pass along data, but without imposing an interpretation on that data. Protocols
sit on top of transports; we can think of them as the language that devices use
to speak to each other (a bit like morse code, or “three puffs means the Vikings
are coming!”). The rest of this section looks at off-board (or non-local) networking
options for the IoT, and finishes with a look at LPWAN options.

So far we’ve used: HTTP(S) over WiFi. Other important options exist at the applica-
tion layer (and LPWAN is important):

1

HTTP, and REST (a set of conventions plus JSON or XML on top of HTTP), is probably
the most popular protocol (see below). The big three non-HTTP protocols are:

• MQTT: circa 1999 publish / subscribe little in-built security, but often paired
with SSL/TLS supported by AWS IoT and Azure IoT; single broker and multiple
clients

• AMQP: circa 2003 pub/sub or request/response supported by Azure IoT
• CoAP: 2010, (standardised in) 2014; pub/sub or request/response; REST-like,
but both stateless and sessionless, low bandwidth, but relatively uncommon

1Image source.

282 Hamish Cunningham

images/network-layers.png
images/iot-protocols.jpg

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

More recently web sockets have become an options, lower overhead than HTTP but
also lower level).

Important differences include the security models (often not baked in to the earlier
protocols, later layered on with SSL/TLS), QoS, levels of support:

2

Their relative popularity was summarised by an Eclipse Foundation survey:

2Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP, N. Naik,
IEEE Xplore, 2017.

Hamish Cunningham 283

images/protocols-table.png
images/protocols-usage.jpg
images/protocols-usage.jpg
images/protocols-usage.jpg

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

12.1.1 Lower Power WANs and TTN

The rest of this section concentrates on Lower Power Wide Area Networks (LPWAN)
IoT connectivity options, and especialy LoRaWAN and The Things Network.

WiFi is popular, but it is designed for high bandwidth devices, which may be quite
wasteful in this context (our IoT gizmos are probably not going to be streaming HD
video!). Because of this a variety of LPWAN options are coming that more closely
mirror IoT specificities (very low data rates, low power radio options). The leading
examples:

• LoRa, LoRaWAN (spread spectrum)
• Ultra Narrow Band (UNB), e.g. Sigfox
• LTE-M and NB-IoT from cellular providers

One solution to all this choice is the ‘throw in the kitchen sink’ approach — e.g. Py-
com supporting 5 networks.

The LoRa (Long Range) radio protocol is a (physical layer), spread spectrum (~125
kHz) protocol employing a frequency-modulated (FM) chirp. LoRaWAN is a media
access control (MAC) protocol (network layer) layered on top of LoRa. Upload /
download are symmetrical. More details in Andreas Spiess’ video:

• LPWAN overview 0:36-6:00
• LoRa vs LTE 11:51-12:50
• LoRaWAN 13:10-
• Commercial vs community 13:44-15:08

LoRaWAN has come to particular prominence recently because of the success of
the Things Network. This crowdfunded LoRaWAN initiative enables distributed
LoRaWAN has been very successful in spreading across the world, based on its
democratising manifesto:

284 Hamish Cunningham

images/protocols-usage.jpg
images/protocols-usage.jpg
https://www.thethingsnetwork.org/
https://www.youtube.com/watch?v=uW8XQxh1h08
https://www.youtube.com/watch?v=uW8XQxh1h08
https://youtu.be/hMOwbNUpDQA
https://www.thethingsnetwork.org/community/berlin/post/the-ttn-manifesto

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Everything that carries power will be connected to Internet eventually. Con-
trolling the network that makes this possible means controlling the world. We
believe that this power should not be restricted to a few people, companies or
nations. Instead this should be distributed over as many people as possible
without the possibility to be taken away by anyone.

3

There are two main families of alternative to LoRaWAN: UNB (e.g. Sigfox) and the
new cellular offerings (LTE-M and NB-IOT). Ultra Narrow Band (UNB) uses less spec-
trum than LoRa, and experiences lower noise (interference) levels as a result. Up-
load / download are asymmetrical (download, or network to device, is lower band-
width than upload, or device to network). Both Sigfox and NB IoT use UNB.

Sigfox is a global LPWAN network operator that: tries to build adoption at the device
(hardware) level by minimising connections costs; makes money by selling band-
width; competes with current mobile telecoms providers. NB IoT and LTE-M are from
the big telecoms companies.

The mobile operators (working together as 3GPP) have made several responses to
LPWAN competition:

• NB IoT is recently standardised, still rolling out (?); deployed “in-band” in spec-
trum allocated to Long Term Evolution (LTE)

• LTE-M is more mature and “allows IoT devices to connect directly to a 4G net-
work, without a gateway and on batteries”

3Example TTN architecture.

Hamish Cunningham 285

images/ttn-architecture.png

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The key criteria are bandwidth vs. range and vs. power:

(The other protocols: mentionned are: ZigBee, but this is more about PANs (per-
sonal area networks) than WANs; BlueTooth and BlueTooth LE, ditto. These make
sense as device-to-gateway protocols, and if we assume that the gateway has
mains power, then it is likely to use WiFi or wired ethernet.)

This has been a whistle-stop tour of IoT network transports and protocols.

286 Hamish Cunningham

images/bandwidth-vs-range.png
images/power-vs-bandwidth.png

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

12.2 Hope, Revisited

On day one of the fourth iteration of the IoT course from which these notes orig-
inated (last year), I had the unexpected and slightly unsettling pleasure of invit-
ing one hundred (mostly) strangers into my bedroom (mediated, of course, by our
Zoom-alike video conferencing tool) for my first lecture of 2021. The forward view
from my Sheffield home was of more lockdown, more illness, more poverty, and
less of the pleasures of human company that sustain and nourish us as members of
our miraculously social and cooperative species. There had to be, I thought, some
silver linings hiding in this vast and ugly grey cloud. There were three that I came
up with then.

First, chaos is the new normal. Don’t worry if you’re blown off course. Don’t stress
about that code that doesn’t compile. We’re only human, and the world is a difficult
place to live. Try your best to keep smiling, expect others to sympathise and they
probably will, and make sure to have a silly hat ready to hand at all times.

Second, like banging your head against a wall, it will feel really good when it
stops!4

We’ll get to the third in a minute, but I’ve since thought of a fourth silver lining,
which is how well the need to isolate to protect each other has proved our respect
and love for our fellow strugglers. Most especially the wonderful extent to which
the young and strong and healthy have carefully isolated and distanced in order to
protect others from infection. Everyone is a hero, and you are all beautiful.

The one that I’d like to delve into here, though, was silver lining #3, viz.: it is more
obvious than ever that our social systems are profoundly broken, and that the old
ways don’t work. Those ways are what got us into this nightmare in the first place!
So we have to build back differently. I’ll finish this section by summarising a little
of why that has to be true (which is all a bit of a downer; feel free to skip ahead!)
and then share a few glints of optimism, a few shards of hope, poking their bright
beams through the overcast. And hope there is; so heads up!

12.2.1 The Depressing Bit

(Skip to the next section if you’re feeling low!)

4Writing this in January 2022 the view from my (fortunate, privileged) desk is much more optimistic,
with the NHS vaccination programme having helped reduce the seriousness of infection, and omi-
cron seeming to be milder than previous variants. Space to live again. If this isn’t true where you
are, my sympathies, and, wherever you live, the disgracefull concentration of vaccine availability
in the rich countries has turned large parts of the world into covid petri dishes, generating new
strains that are not at all guaranteed to be milder than their predecessors and putting us all at risk.
Madness.

Hamish Cunningham 287

https://hamish.gate.ac.uk/posts/2007/01/01/cooperation/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

The pandemic, climate change, a decade of austerity ended by a massive spree
for corrupt procurement: we are not, my friends, floating gently along the River of
Contentment. As noted by Peter Wadhams in his Farewell to Ice (Wadhams 2017),

…the existing level of carbon dioxide in the atmosphere is sufficient to cause
unacceptable amounts of warming in the future. We no longer have a ‘carbon
budget’ that we can burn through before feeling worried that we have caused
massive climate change. We have burned through the budget and are causing
the change now. … By now it is too late. The CO₂ levels in the atmosphere are
already so high that when their warming potential is realized in a few decades,
the resulting temperature rise will be catastrophic. (p. 192)

What to do? The first thing is to recognise that the problems are neither the acci-
dental consequence of imperfect electoral systems nor the outcome of unpleasant
character or greedy individuals. Not to say that these things don’t exist and aren’t
significant at any particular point in time, but they are not the causes of the under-
lying tendency towards disaster that we are, unfortunately, firmly routed on.

No, the problems are systemic, and structural.

Lord Stern, who was commissioned by the UK government in the mid-naughties to
study The Economics of Climate Change (Stern and UK, Treasury 2007) advocated
aiming for a likely 3 degree temperature rise as being “economically viable,” and
rejected all other options as non-viable. The report then included all sorts of ev-
idence that shows the 3 degree rise to be a huge gamble, with odds of 50:50 in
some cases of much worse consequences.

In other words, as set out by Stern at the behest of the UK Treasury, our economic
system cannot support odds better than the toss of a coin for avoiding catastrophic
change. Can we conclude anything other than that the economic system itself is at
fault? And the situation has only worsenned since then. If it is not economically
viable to save the planet, then the economic system is wrong.

It is common to think that markets find efficient solutions. They don’t: they find
profitable solutions. And our markets are dominated by a quite small number of
truly humungous corporations, vying to become even larger. In a 2011 article on
the Network of Global Corporate Control, complex systems specialists from a Swiss
university (Vitali, Glattfelder, and Battiston 2011) analysed “the relationships be-
tween 43,000 transnational corporations” and “identified a relatively small group
of companies, mainly banks, with disproportionate power over the global economy”
(New Scientist, October 2011). The study “combines the mathematics long used
to model natural systems with comprehensive corporate data to map ownership
among the world’s transnational corporations (TNCs)” and uses data on “37 million
companies and investors” with details of “all 43,060 TNCs.” The research “revealed
a core of 1318 companies” that “represented 20 per cent of global operating rev-
enues” and “the majority of the world’s large blue chip and manufacturing firms —

288 Hamish Cunningham

https://hamish.gate.ac.uk/posts/2017/01/01/the-future/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

the ‘real’ economy — representing a further 60 per cent of global revenues.” Fur-
ther, “it found much of it tracked back to a ‘super-entity’ of 147 even more tightly
knit companies … that controlled 40 per cent of the total wealth … Most were fi-
nancial institutions. The top 20 included Barclays Bank, JPMorgan Chase & Co, and
The Goldman Sachs Group.” In other words, 150 or so organisations (mostly banks)
control the lion’s share of world production. Another 1000 or so control much of the
rest.

One thing that the markets dominated by these huge corporations do often drive
is competition. (Not all the time: when the banks cease to be competitive the
state bails them out; when a powerful group of companies stitches up one sector
then they’ll inflate prices. But as a general rule, markets are competitive arenas.)
Competition in our economy means that each company has to grow (or else your
competitor will get big enough to buy you or undercut you or otherwise get their
hands on your share of the pie). Infinite growth is built in to the fundamental model
of our economy. Of course there are, in reality, limits to growth: common sense can
tell you all you need to know here, but if that doesn’t cut it then get a few of your
friends or colleagues to rendezvous in the bathroom or the stationary cupboard
and then just keep on packing them in. Economists may tell you that ‘externalities’
mean that growth is unlimited, but your friends will tell you that things are getting
pretty stuffy already and to please stop being such a dozy wazzock. As globalisation
has spread corporate competition across the world, so growth gets less and less
viable within existing markets.

Competition also means that if one corporation or country manages to drive down
the wages and social services of their workforce then they automatically put pres-
sure on their competitors to do the same. Otherwise the higher profits of the cheap-
skates will let them encroach on the markets of the higher paying. Over time this
creates a race to the bottom.

And all this destructive chaos is the basis of our food system, and the zoonotic melt-
ing pots that it has created; as Wallace wrote presciently in 2016, “Highly capital-
ized agriculture may be farming pathogens as much as chickens or corn” (Wallace
2016).

So much, so depressing. Bleugh.

12.2.2 The Third Certainty: Change

It is sometimes said that the only certainties in life are death and taxes. I think we
can safely add a third certainty: change. The systemic tendencies (towards infinite
growth or minimal wages) which we can see working themselves out in our food
system (progenitor of the covid pandemic5) or our environment (and the melting
5As Wiebers and Feigin state in (Wiebers and Feigin 2020), “…in the midst of all of the pandemonium
and destruction, and as we begin to find our way through this crisis, it is imperative for us as a

Hamish Cunningham 289

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

ice caps) or our health systems (where PPE stocks became an afterthought) create
a structure which is both massively dynamic and permanently unstable. I think that
if we raise our heads and look far enough ahead, even as we judder and shake atop
this swirling cauldron there is every chance that we can steer a course to a more
rational world, and save ourselves from the whirlpool at the center.

Why? Three reasons.6

12.2.2.1 Democratising… Stuff?

The net revolutionised the virtual world and made publishing free to all. But what
about the chair your sit on or the fork you eat with? What if we get the ability to
share, modify and build anything, in the same way we can publish anything? What
if we can democratise the creation and recreation of the physical world? What if
we can devolve manufacturing to individuals and communities? Perhaps we would
make different choices? Perhaps we wouldn’t put profit before people?

If the last 20 years were about the web, then the next 20 will be about making.
Why? Ubiquitous connectivity and decentralised production in the virtual world
have made revolutions in creating, sharing and consuming on-line. Now the same
changes are starting in the world of manufacturing, and the consequences are likely
to be massive.

Remember how hard it used to be to publish? Photocopiers spawned a whole gener-
ation of fliers and fanzines, but the big-time of global distribution used to be a very
closed world. When we publish we share, and the web has let us share as never
before – but, until recently, we’ve mostly used the web to share information (in the
form of bit streams of one sort or another). The next revolutionary wave of tech-
nology brings the ability to share into the physical world – it brings the information
revolution from bits to atoms. And as Chris Anderson writes in his Makers7 the phys-
ical world dwarfs the virtual. (There’s perhaps an 80-20 ratio between economic
activity devoted to atoms in comparison to bits.)

Capitalism drives innovation, which brings with it continual waves of technological
revolution.8

society and species to focus and reflect deeply upon what this and other related human health
crises are telling us about our role in these increasingly frequent events and about what we can
do to avoid them in the future. Failure to do so may result in the unwitting extermination of all
or a good part of our species from this planet. Although it is tempting for us to lay the blame for
pandemics such as COVID-19 on bats, pangolins, or other wild species, it is human behavior that
is responsible for the vast majority of zoonotic diseases that jump the species barrier from animals
to humans.”

6Some of the following previously appeared as articles on my blog.
7The title and the theme echo Cory Doctorow’s Makers; read them both!
8The unfortunate thing, of course, is that it doesn’t do this in service of human need, but as part of the
competition for corporate profit – hence our inability to stop the degradation of our environment,
or the banker-oriented response to the economic crisis, or the continual wars over oil in the Middle

290 Hamish Cunningham

http://about.me/andersonchris
http://www.makers-revolution.com/#2aa/custom_plain
https://hamish.gate.ac.uk/
http://craphound.com/
http://craphound.com/makers/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Anderson’s book quotes Cory Doctorow saying that increasingly “the money on the
table is like krill” – many many tiny chunks of nutrition that suits a new type of sieve,
smaller and more distributed (a “long tail”). Both authors imagine the changes that
will take place when the means of production become minituarised, localised, and
– in a sense – democratised. At least under some circumstances the small and the
open and the fast moving can sneak beneath the corporate radar long enough to
become viable alternatives – like my friends at Pimoroni in Sheffield, for example,
who sold tens of thousands of locally-made boxes for the Raspberry Pi.

The new methods of manufacturing (CAD-CAM designs driving CNC routers, 3D
printing and laser cutting), and the new culture of open source and dynamic virtual
organisations start to challenge corporate dominance, at least around the edges.
China’s explosive growth and its willingness to ignore the west’s definition of “in-
tellectual property” helps too (though bringing with it the labour relations of the
sweatshop).

Anderson talks of a “future where the Maker Movement is more about self-
sufficiency… than it is about building businesses….” This, he says, is “closer to
the original ideas of the Homebrew Computing Club or the Whole Earth Catalogue.
The idea, then, was not to create big companies, but rather to free ourselves from
big companies” (pp. 225-226)

We can also make a link into the argument for localist economics made by organ-
isations like the Transition Network (e.g. in Rob Hopkins’ books) – peak oil, social
instability and environmental crisis all point to the local and the small scale as a key
source of sustainability and resilience. The more stuff we can manufacture within
short distances of where we live, the safer we are (not to mention the saved carbon
in long-distance transport).

Welcome to the future – perhaps it will be of our own making :-)

12.2.2.2 IoT: from their Cloud to our Fog?

Industry was pumping private data into its clouds like the hydrocarbon barons
had pumped CO₂ into the atmosphere. Like those fossil fuel billionaires, the
barons of the surveillance economy had a vested interest in sowing confusion
about whether and how all this was going to bite us in the ass. By the time
climate change can no longer be denied, it’ll be too late: we’ll have pumped
too much CO₂ into the sky to stop the seas from swallowing the world; by the
time the datapocalypse is obvious even to people whose paychecks depended
on denying it, it would be too late. Any data you collect will probably leak, any
data you retain will definitely leak, and we’re putting data-collection capability

east. This isn’t about bad people, or even bad ideas – it is the central logic of the system that
revolves around competition between vast corporations, and everything else is secondary. See
Joel Bakan’s The Coporation for a good description of how this works (or doesn’t!).

Hamish Cunningham 291

http://pimoroni.com/
http://raspberrypi.org/
http://www.transitionnetwork.org/
http://www.transitionnetwork.org/blogs/rob-hopkins
http://www.joelbakan.com/
http://thecorporation.com/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

into fucking lightbulbs now. It’s way too late to decarbonize the surveillance
economy. Cory Doctorow, Attack Surface (Doctorow 2020)

Cloud computing has driven miraculous reductions in the difficulty of large scale
data collection, analysis and distribution. This has allowed us to conquer many
previouly insoluble problems, and, to a degree, democratised access to massively
scaleable computation. It has also had two more negative consequences. In the
context of the market-driven imperative to sell the next plastic widget to ever more
passive and isolated consumers, advertising has become the rationale for a surveil-
lance system more pervasive and all-encompassing than the worst dystopian night-
mares or our forebears. (As part of the same process, the carbon footprint of the
global datacenter has reached a significant fraction of our total energy uses, includ-
ing a troubling quantity of energy devoted to blockchains9.)

And then there’s the spies. Half a dozen years ago I wrote:

If you’ve been paying more than a gnat’s hair’s width of attention to All Things
Internet in the past year or so, you’ll know that the US and the UK have been
spending the odd spare billion of taxpayers’ hard-earned on a programme of
indiscriminate surveillance of everything you, I and the dog do on-line.

(This is fine of course. I’ve nothing to hide. You’re welcome to pop round and
put a microphone in my toilet and a webcam in my bedroom — though I may
demand the right to fit the same gear in your house first… That ok? And I
reserve the right to point out that a couple of hundred thousand people have
the same access to all your data that Edward Snowden had shortly before he
walked out of a US government building in Hawaii with several gigabytes of
leak. If he can do it, how many others? And do you trust them all? You do?
Great! Now, please email your credit card numbers and a selection of explicit
selfies to me. It’s for your own good, honest.)

The spies like to cultivate back doors in the cryptography that protects on-line trans-
actions. Even if that was ok, there’s no way to have a backdoor that only a spy can
use. Four years ago, in the wake of a massive attack on UK medical computing, I
wrote that:

The ransomware cyber attack on the NHS is horrifying — and as a computer
scientist I feel ashamed that the world my field helped create is now at the
mercy of such destructive scammers. It didn’t have to be this way!

This note looks at the context of the attack — why did the NSA help the at-

9As Michael Roberts writes, “A particular negative of the NFT craze is that encoding artwork or an idea
onto a blockchain involves complex computations that are highly energy intensive. In six months,
a single NFT by one crypto artist consumed electricity equivalent to an EU citizen’s average energy
consumption over 77 years. This naturally results in a significant carbon footprint. And this is an
issue that applies to blockchain technology more generally.”

292 Hamish Cunningham

https://hamish.gate.ac.uk/posts/2014/08/22/worse-than-i-thought/
https://hamish.gate.ac.uk/posts/2017/05/15/wanna-cry-nhs-attack/
https://hamish.gate.ac.uk/posts/2017/05/15/wanna-cry-nhs-attack/
https://thenextrecession.wordpress.com/2021/04/09/financial-fiction-part-two-the-new-ones-spacs-nfts-cryptocurrencies/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

tackers?! — and explains the “kill switch” and how it slowed the spread of the
WannaCry worm. It concludes with ways we can avoid this type of nightmare
in the future.

First, the spooks: the NSA (and GCHQ) believe that they need (and have the
right) to see every piece of digital communication made by any citizen at any
time under any circumstances. More than that — they also believe that they’re
entitled to turn on your computer or phone or TV and listen on its microphone
or watch on its camera. (That’s why Facebook’s Mark Zuckerberg tapes over
his laptop’s webcam!)

There’s a problem: just as we don’t leave home without locking our doors, we
don’t leave our computer systems unguarded. How are the spies to cope? They
do two things:

1. “Persuade” software companies to leave deliberate holes in their security.
(This is a little like convincing all lock installers to post a copy of every key
to the local constabulary, only worse: digital keys are much easier to copy
or steal. When Amber Rudd says WhatsApp needs a handy backdoor for
law enforcement purposes, this is what she means!)

2. Break into computer systems, subvert their security mechanisms and suck
up the data from your email, chats, documents, etc. etc.

This second activity is what has helped bring the NHS’s computer systems to
their knees. One of the NSA’s programs for breaking into Microsoft software
(codenamed Eternalblue) was stolen and publicly released in April. The black
hat hackers behind WannaCry adapted it to their own nefarious purposes, and
we’re now suffering the results.

Government not only supports the spies in these efforts, they allow them to do
their worst in total secrecy, even in the courts. In the UK we’re now banned by
the Investigatory Powers Act from hearing in court about what evidence was
collected in this way and how — giving a whole range of government agencies
and employees carte blanche to compromise our online security with impunity.

Since then the Solar Winds hack has demonstrated even more powerfully how vul-
nerable this process (and the closed-source software that makes it possible) makes
us all. Open source is part of the answer, but the situation is urgent; what to do?

Tim Berners-Lee’s answer, from his company Inrupt, is the Solid project to de-
centralise personal data storage. With a longer pedigree, Freedombox has been
building personal servers to move the basic functions of cloud-based SaaS into our
homes. Hook these up with the IoT, with programmable personal devices and open
systems, and we’re starting to see ways to claw back our data: to build our own
fog from our domestic gateways and personal IoT devices.

There’s another potential upside here, to do with prospects for deconvergence, dis-

Hamish Cunningham 293

https://www.schneier.com/blog/archives/2020/12/russias-solarwinds-attack.html
https://inrupt.com/
https://solidproject.org/
https://freedombox.org/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

aggregation, and device respecialisation. Sherry Turkle’s fantastic but terrifying
book Alone Together explains how “Technology has become the architect of our inti-
macies. Online, we fall prey to the illusion of companionship, gathering thousands
of Twitter and Facebook friends, and confusing tweets and wall posts with authentic
communication. But this relentless connection leads to a deep solitude.” The men-
tal health penalties of this contradiction are increasingly commonplace, especially
amongst the young, our digital natives.

The project I would like to do is about making it easier not to look at my phone so
often (and about sharing less of my personal data with the internet behemoths).
We have spent a decade squeezing all the information processing functionality in
our lives into a single device (and a marvellous device it has become: smartphones
aren’t going away any time soon). My problem is that whenever I decide to step
away from the beast for a little while (to get a break from all the messaging, for
example, or rest my eyes on a paper book for a change) one of the other functions
of the phone calls me back almost immediately (I want to put some music on, or
check a recipe, or etc. etc. etc.). What I would like is to separate out some of those
functions into special-purpose devices: informational appliances that are more re-
stricted, less all-encompassing. This is partly what smarthome gadgets like Echo
or HomePod or Nest attempt to do, but at the cost of sending yet more data to the
cloud (and from there to identity thieves, or, whenever it feels the need, to the state
– see above).

In this context I’m excited by the possibilities of connected microcontrollers like
the ESP32, which are low energy and low cost enough to be used in volume, but
powerful enough to do useful things in a smartwatch package like this one, for
example. IoT devices exist at the edge of the cloud. If they become more peer-to-
peer, more foggy, (and if we include the substantial computate power now available
on the gateway ARM processors10) then we can reduce reliance on the cloud.

So: informational device disagreggation! New privacy in the fog! Unlimited free
biscuits for all nerds! You heard it here first.

12.2.2.3 Transition: from Sustainability to Resilience?

When not seen through the distorted lens of their supposed efficiency, markets
are destructive. Instead we need to think of efficiency as what best meets human
needs. This means that:

…“what’s good is what’s good for the biosphere.” In light of that principle,
many efficiencies are quickly seen to be profoundly destructive, and many in-
efficiencies can now be understood as unintentionally salvational. Robustness

10The Pi 4 makes a great P2P secure hosting and home gateway when installed with FreedomBox (and
is now capable of being a decent desktop replacement, fact).

294 Hamish Cunningham

https://www.basicbooks.com/titles/sherry-turkle/alone-together/9780465093656/
https://www.hackster.io/news/lilygo-s-upgraded-ttgo-t-watch-2020-ditches-the-bulk-puts-display-sensors-and-esp32-on-your-wrist-22cdc19fb9d3
https://wiki.debian.org/FreedomBox

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

and resilience are in general inefficient; but they are robust, they are resilient.
And we need that by design. Kim Stanley Robinson, The Ministry for the Future
(Robinson 2020)

Resilience is the ability to bounce back from stresses, strains and shocks. A society
is resilient if it can supply its needs (e.g. for food, shelter or health) without relying
on systems outside of its control. A society is not resilient if it relies on shipping
large parts of its needs half way around the world. We are vulnerable to disruption
brought by war, or the chaotic weather systems brought by climate change, or the
volatile price of oil.

The Transition Network make a strong case for the benefits of working towards
community resilience, not least because the act of making positive change, even
when that change is necessarily partial and incomplete, is a great way to enjoy life!
Connecting to our locality, to the people around us, is a great way to feel genuine
togetherness and to reduce our reliance on the virtual variety analysed by Turkle.
And the spin-offs are to make us all stronger: for example, increasing local food
production can help us adapt to change andmake our communities more resilient.

There’s lots to do! Dive in!

12.2.3 The Main Reason

…the strongest, in the existence of any social species, are those who are the
most social. In human terms, most ethical… There is no strength to be gained
from hurting one another. Only weakness. (Ursula le Guin, The Dispossessed)

Ok, I’m not very good at counting (that’s perhaps why I’ve spent most of my working
life with computers; they do the numbers!). There are more than three reasons for
hope; almost uncountable reasons, and the main one is you!

Thanks for coming out to play, and best of luck with your journey! Let’s leave the
last word to our old mate Albert, who knew a thing or two…

A human being is a part of this whole, called by us “Universe,” a part limited
in time and space. He experiences himself, his thoughts and feelings as some-
thing separated from the rest — a kind of optical delusion of consciousness.
This delusion is a kind of prison for us, restricting us to our personal desires
and to apportion for a few persons nearest to us. Our task must be to free
ourselves from this prison by widening our circle of compassion to embrace all
living creatures and the whole of nature in its beauty. (Albert Einstein.)

Hamish Cunningham 295

http://www.transitionnetwork.org/

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

12.3 COM3505 Week 12 Notes

12.3.1 Learning Objectives

Our objective this week is to finish, commit and push the project work. Good luck,
and bon voyage!

296 Hamish Cunningham

13 Appendix A: More Notes on Build Systems

This chapter contains material on build systems and build issues (e.g. timing) that
are beyond the scope of the course. They are of varying relevance; use them as
advanced background if you wish, but note that they may not work as expected!

References to the magic.sh script below refer to a version which is now present as
old-magic.sh.

13.1 CLI on a Raspberry Pi

This section describes setting up an ESP-IDF CLI build. The instructions are for a
Raspberry Pi running the Debian Buster port (which used to be known as Raspbian
but now seems to have mutated into RaspiOS1). The instructions should work pretty
much unchanged on Ubuntu 20.04. (If you are on other platforms you’ll need to
adapt the instructions or use a VM or docker – see next section.)

If you need a cheap machine to develop for the IoT, Raspberry Pi models 4 or 400
are both capable of doing the job. They won’t be the fastest environment, but for
around £/$/€100 you can get a capable computer that will plug into your TV or HDMI
monitor and do everything you need to for the course. (A good choice would be this
kit, for example, or this one.)

Below I describe how to get up and running with ESP32 development on the Pi. Note
that the setup process took several hours (on a fast network), so don’t leave it until
10 minutes before your deadline :) (The complete setup uses around 2.5GB of the
flash disk, depending on configuration.)

Here’s some more timing information, for install and build (using the firmware and
scripts in the HelloWorld example, which will be introduced later):

• IDF/Arduino core install using magic.sh setup

– 3 minutes on 4 core Intel i7 with 32GB RAM
– 20 minutes on a Pi 4 (4GB RAM)

• HelloWorld build from scratch using magic.sh idf-py build

– 1.5 minutes on the i7
– 25 minutes on the Pi

1Actually the names seem to relate to some change in responsibilities; delve here if you care.

297

https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/support/old-magic.sh
https://shop.pimoroni.com/products/raspberry-pi-4-desktop-kit?variant=31856449290323
https://shop.pimoroni.com/products/raspberry-pi-4-desktop-kit?variant=31856449290323
https://shop.pimoroni.com/products/raspberry-pi-400-personal-computer-kit?variant=32280730107987
https://www.raspberrypi.org/forums/viewtopic.php?f=66&t=275380#p1668466

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• HelloWorld rebuild (changes in main only) using magic.sh idf-py build

– 5 seconds on the i7
– 15 seconds on the Pi

Note that although setup and clean compiles are slow on the Pi, the com-
pile/burn/test cycle is reasonably quick at under 30 seconds. This means that you
can work productively on a Raspberry Pi, so long as you allow an hour for the initial
setup. (This is from the command line, of course; running a big IDE like VS Code or
Eclipse would no doubt be slower!)

To set up the operating system:

• install RaspiOS buster (I used the August 2020 version; later versions should
work)

• choose a strong password
• connect to a network
• run Raspberry Pi Configuration (e.g. from the Preferences menu) and:

– turn off Auto Login
– disable the Spash Screen
– enable ssh if you plan to remote log in; copy a public key to

~/.ssh/authorized_keys and turn off password login in
/etc/ssh/sshd_config by adding PasswordAuthentication no

• install all updates and reboot

To get the ESP32 development environments running:

• first choose which IDF version to base your install from, e.g.:

– latest: the most recent available, instructions here
– stable: the last release, instructions here

• then clone the repository,

For example, using a pre-release IDF 4.3 in December 2020:

• install software prerequisites:

– sudo apt-get install git wget flex bison gperf python3 python3-pip python3-
setuptools cmake ninja-build ccache libffi-dev libssl-dev dfu-util

• make python3 the default:
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 10

• clone the ESP-IDF and Arduino core git repositories:

– mkdir ~/esp
– cd ~/esp
– git clone --recursive https://github.com/espressif/esp-idf.git
– git clone --recursive https://github.com/espressif/arduino-esp32.git

298 Hamish Cunningham

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/get-started/index.html

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

– cd esp-idf
– git submodule update --init --recursive
– git checkout --recurse-submodules 357a27760
– cd ../arduino-esp32;
– git submodule update --init --recursive
– git checkout --recurse-submodules 41e392f662

• toolchain: download the Xtensa compiler etc.:

– cd ~/esp/esp-idf
– ./install.sh

• set up environment variables:

– echo "PATH=$PATH:~/.local/bin; export PATH">>~/.bashrc
– echo "alias get_idf='. $HOME/esp/esp-idf/export.sh'">>~/.bashrc

• now you can run get_idf to set up or refresh the SDK in any terminal session;
check that this is working:

– get_idf
– which idf.py: this should report something like

/home/pi/esp/esp-idf/tools/idf.py

To try burning an example:

• cd; cp -a esp/esp-idf/examples/get-started/hello_world .
• cd hello_world; idf.py build flash monitor

Well done! Please give yourself a pat on the back. If you’re feeling brave: VSCode
for the Pi is available here :)

13.2 CLI Using Docker

If you don’t have an Ubuntu or RasbiOS environment available, you can try using
docker (although you won’t be able to burn firmware directly unless you’re on an-
other Linux platform).

If you’ve cloned the course repo (the-internet-of-things) and cd’d into it, and con-
nected an ESP32 to USB, you should now be able to do the following:

• create an image using something like:

– sudo docker build . -t 20.04:magic

2Why the wierd checkout numbers? These are git commit hashes, which identify unique commits
in the version history. We need them because of version hell! (Less flippantly, there are only
a subset of versions where IDF and Arduino core match up, especially if we want to use recent
developments.)

Hamish Cunningham 299

https://code.headmelted.com/
https://gitlab.com/hamishcunningham/the-internet-of-things

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

• run the image and build the firmware using something like:

– sudo docker run --device=/dev/ttyUSB0 -it 20.04:magic
– cd the-internet-of-things/exercises/HelloWorld/
– ./magic.sh idf-py build (or just ./magic.sh on Linux, which will also do the
burn and monitor serial)

(Command-line syntax for docker on non-Linux platforms may also be a little differ-
ent; see the docker docs.)

If you’re on Linux, and you have the correct device specified (/dev/ttyUSB0, for exam-
ple), then you should also be able to burn the firmware, e.g. by just doing ./magic.sh.
This won’t work on MacOS or Windoze because no easy way to map the serial port
driver model currenly exists In this case you’ll need to copy the the-internet-of-
things/exercises/HelloWorld/build/HelloWorld.bin file out of your container and burn
the firmware using a local install of ESP-IDF (which somewhat defeats the object!).
If you want to try this, the command that is needed to burn the firmware can be
copied from the output of the docker build, e.g.:

1 ...
2 Generated /home/ubuntu/the-internet -of-things/exercises/HelloWorld/

build/HelloWorld.bin
3 [1081/1082] cd /root/esp/esp-idf/components/esptool_py && /usr/bin/

cmake -D IDF_PATH="/root/esp/esp-idf" -D ESPTOOLPY="/root/.
espressif/python_en...D WORKING_DIRECTORY="/home/ubuntu/the-
internet -of-things/exercises/HelloWorld/build" -P /root/esp/esp-idf
/components/esptool_py/run_esptool.cmake

4 esptool.py --chip esp32 -p /dev/ttyUSB0 -b 921600 --before=
default_reset --after=hard_reset write_flash --flash_mode dio --
flash_freq 40m --flash_size 4MB 0x8000 partition_table/partition -
table.bin 0x16000 ota_data_initial.bin 0x1000 bootloader/bootloader
.bin 0x20000 HelloWorld.bin

5 esptool.py v3.0-dev
6 Serial port /dev/ttyUSB0
7 Connecting......

13.3 VSCode IDF Extension

A new kid on the block for ESP32 development support is the ESP-IDF VSCode plugin:
see the installation guide for details. The plugin is still pretty new, and the process
of getting it to work with a clone of both the IDF and the Arduino core is pretty
involved. When it works, though, it looks like a nice environment to use :)

I got it to work like this (on Ubuntu 20.04):

• install prerequisites, including: sudo apt-get install python3-venv
• install VSCode (snap install --classic code on Ubuntu)
• download esp-idf (e.g. via magic.sh setup)

300 Hamish Cunningham

https://docs.docker.com/
https://forums.docker.com/t/how-to-expose-host-serial-port-to-container-correctly/81588/3
https://forums.docker.com/t/how-to-expose-host-serial-port-to-container-correctly/81588/3
https://github.com/espressif/vscode-esp-idf-extension/#quick-installation-guide

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

• activate the python environment:
source ~/.espressif/python_env/idf4.3_py3.8_env/bin/activate

• set up env vars source ~/esp/esp-idf/export.sh
• launch VSCode, e.g.: code
• Cntrl+P
• ext install espressif.esp-idf-extension
• close VSCode
• do plugin prereqs, e.g.

~/.espressif/python_env/idf4.3_py3.8_env/bin/python -m pip install -r
~/.vscode/extensions/espressif.esp-idf-extension-0.5.1/ esp_debug_adapter/
requirements.txt

• relaunch VSCode
• press F1 and select ESP-IDF: Configure ESP-IDF extension
• configure the extension to use your IDF; feed it your values of PATH,

OPENOCD_SCRIPTS and python, e.g.
~/.espressif/python_env/idf4.3_py3.8_env/bin/python

• relaunch VSCode, e.g.: code the-internet-of-things/exercises/HelloWorld
• see getting started, or click the build/flash/monitor button on the bottom bar

See also: Quick User Guide for the ESP-IDF VS Code Extension.

13.4 Using VSCode with the Arduino Extension3

This section is about using VSCode in a more basic, but still useful mode.

Some more tweaks may need to be done for full IntelliSense compatibility, so you
may need to hide squigglies until we figure out the additional paths you need to
add. You can still use these instructions to do things like uploading your code to the
ESP32, though.

First install VSCode itself; on Ubuntu you can do that like this on recent versions:

1 snap install code --classic

You can then run the beast from the command line with code, or from the launcher
by vs....

Now install the C++ and Arduino extensions:

• Follow the installation instructions at this page to install the Arduino extension
and at this page to install the C/C++ extension.

• Add the following keys and values to your settings.json, usually stored at ~/.
config/Code/User/settings.json on Linux systems:

– your Arduino IDE installation directory
3This section contributed by Simon Fish.

Hamish Cunningham 301

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/vscode-setup.html
https://youtu.be/Lc6ausiKvQM
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.vscode-arduino
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

– the libraries directory under that one

E.g.:

1 "arduino.path": "/.../arduino-PR-beta1.9-BUILD -115",
2 "C_Cpp.default.includePath": ["/.../arduino-PR-beta1.9-BUILD -115/

libraries/"]

Make sure your JSON is still valid, and save it. You might also need to close and
reopen Visual Studio Code for your include path to be recognised.

Doing all of the above will give you access to many of the Arduino IDE’s functions
from within the Command Palette (usualy Ctrl+Shift+P) within VSCode under the
same names.

13.5 FAQ

• “I’m working on windows and the HelloWorld/sketch example doesn’t work in
ArdIDE…?” The sketch/ folder uses symbolic links to restructure the code from
main/ in a form that ArdIDE will accept. On Windows symbolic links don’t exist
by default, so you’ll need to copy the files from main/ manually instead, to
create a structure like that in sketch/. To do this on Linux or MacOS we can
use cp -aL ./sketch .. to create a copy in the parent directory that will work on
Windows. The same can be achieved fromWindows itself using WSL or cygwin,
or manually doing copy commands.

• “I’m on Ubuntu and getting permissions errors on /dev/ttyUSB0?” Check that
you’ve added yourself to the dialout group.

• “What flavour of C++ do these tools use?” Depending on what versions of ESP
IDF we’re using, either C++14 or C++17; see e.g. here for details.

• “I tried your install recipe for the SDKs and they didn’t work…?” Try going back
to Espressif’s documentation:

– instructions for ArdIDE and the ESP32 layer can be found here
– instructions for the IDF here

• “I get ‘bad magic number’ when configuring?” Try deleting the .pyc files under
~/.espressif.

• “I get ‘mbedtls/include isn’t a directory’ when building?” Try git submodule
update --init --recursive in ~/esp/esp-idf, or a clean clone/checkout of IDF.

• I’m on docker and get docker: Error response from daemon: error gathering device
information while adding custom device "/dev/ttyUSB0": no such file or directory
.? This probably means you haven’t got access to the serial port that your
ESP32 is connected to.

• “Can I go home now?” On receipt of a solid contribution to the Computer
Scientists Retirement Fund many things are possible4

4Guy says you’re still going to need to wear the silly hat though. At least I think that’s what he said.

302 Hamish Cunningham

https://www.esp32.com/viewtopic.php?f=10&t=7400&p=31257#p41667
https://github.com/espressif/arduino-esp32#installation-instructions
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

I always listen very carefully.

Hamish Cunningham 303

14 Appendix B: CircuitPython on Feather S3
and unPhone

Last but not least, The New Thing! Python on micrcocontrollers! Whahey!

This chapter starts with brief introductions to CircuitPython (CP) and its use on the
Feather ESP32S3, then details the process of porting CircuitPython to a new board
in general and the unPhone in particular.

(References to the magic.sh script below refer to the-internet-of-things/support ver-
sion.)

14.1 What is CircuitPython?

Python is a mainstream programming language which has been around for some
30 years – so it still has the feel of a young imposter to this author, but that just
proves how old and rusty he has become. (Hopefully only rusty and not actually
mouldy, at least not yet.) Despite being one of few languages who have dared to
make counting whitespace a programming task, Python has gone from an obscure
script language to being very popular, especially in data science work (aka applied
statistics, aka artificial intelligence :) – see Chapter 6). Over the years it has also
picked up compilation abilities and, amongst other things, a place at the core of
Espressif’s build systems and PlatformIO and etc. etc.

What is CircuitPython (CP)? For most of its life Python itself was considered inap-
propriate for microcontrollers due to the limited memory and other resources avail-
able, but this changed as devices becamemore powerfull, and around a decade ago
Damien George started a project to port Python to smaller devices, called MicroPy-
thon. CP is a fork of Micropython that has been developed in the last half decade by
Adafruit and collaborators, and is now available on a large range of boards and has
a thriving community of open source contributors. It is explicitly “designed to sim-
plify experimenting and learning to code on low-cost microcontroller boards,” and,
when properly configured, presents a very low overhead and smooth development
process.

One of the major benefits of an interpreted language is speeding up the edit/com-
pile/test cycle that dominates programmers’ working lives (usually at the expense
of slower runtimes, though depending on the application this can be a worthwhile

305

https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/support/magic.sh
https://circuitpython.org

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

trade-off). CP is excellent in this respect, providing a file systemmount on whatever
device it is running on that will dynamically reload code when it changes. The expe-
rience of editing a file directly on a running microcontroller and seeing the results
almost instantaneously is a significant advance over the longer compile, flash, test
cycle typical of C and C++ development.

14.2 CircuitPython on the Feather S3

Adafruit Feather boards that have sufficient memory to run CP ship with it installed,
often on top of a TinyUF2 bootloader that also exposes the host board as a USB
mass storage device. When a .uf2 file containing appropriate firmware is copied
onto the device UF2 installs it, obviating the normal flashing process. When the
firmware installed in this way (or via flashing) runs CP, a new device appears which
is normally called CIRCUITPY and which contains a file code.py. When you edit this, the
code runs on the board and, if you listen on the serial port, you will see the results
(and/or Python’s REPL loop).

There are lots of detailed guides and example code available, e.g.:

• a general introduction
• specifics of CP on the ESP32 S3 board
• firmware for the ESP32S3 feather with 4MB flash and 2MB PSRAM (used for
COM3505 iteration 7, Spring 2024)

• Adafruit’s fork of TinyUF2
• API reference
• Essentials guide and example code

14.3 Porting CircuitPython to the unPhone

Like any complex software ecosystem, CP is challenging to build and to adapt to
new hardware. This section describes the process of porting CP to the unPhone.

Adafruit are very supportive of developers contributing support for new boards to
the CP ecosystem, and provide this guide to porting CP to new boards. At the time
of writing this guide is not 100% up-to-date with the existing codebase; see this
issue for some pointers to where the guide needs updating and for some of the
early history of the unPhone port.

To begin with, and as usual, we need to start from a known good, so the first task
is to rebuild CP for a board that is known to work and test the process. I chose
to build for the Feather ESP32S3 with 4MB flash / 2MB PSRAM. The build process
has quite a lot of dependencies and configuration options, so I wrote a Docker-

306 Hamish Cunningham

https://learn.adafruit.com/welcome-to-circuitpython?view=all
https://learn.adafruit.com/adafruit-esp32-s3-feather?view=all
https://circuitpython.org/board/adafruit_feather_esp32s3_4mbflash_2mbpsram/
https://github.com/adafruit/tinyuf2
https://docs.circuitpython.org/en/latest/docs/index.html
https://learn.adafruit.com/circuitpython-essentials?view=all
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/main/CircuitPython_Essentials
https://learn.adafruit.com/how-to-add-a-new-board-to-circuitpython?view=all
https://github.com/adafruit/circuitpython/issues/7442
https://github.com/adafruit/circuitpython/issues/7442

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

file to create a portable image of the setup, which can be found at the-internet-of-
things/support/circuitpython on the course gitlab.

The interface code to provide an unPhone board definition within CP was then added
to an unphone branch in a fork of the Adafruit repository in the ports/espressif/board-
s/unphone directory.

The magic.sh helper script provides these methods for creating and working with
the Docker image:

• dckr-py-build: build and tag a CP image
• dckr-py-flash: rebuild and flash CP to a connected device (and leave the con-
tainer running); give a -p port flag to map the device into Docker (and if you’re
on Windows or Mac use a VM)

• dckr-py-run: run the CP container
• dckr-py-copy: copy firmware from a running container; give the container name
as $1, e.g. magic.sh dckr-py-copy jumping_maharaja

The image is available from Docker Hub as hamishcunningham/iot:circuitpython.
An example invocation via magic.sh, with a board connected as /dev/ttyACM0:

1 magic.sh -p /dev/ttyACM0 dckr-py-flash

Following a succesful build the script will leave the container running, and we can
copy out the firmware if required by first finding the name of the container and then
calling the dckr-py-copy method like this:

1 $ docker container ls
2 CONTAINER ID IMAGE ... NAMES
3 9e1c2d0b638b hamishcunningham/iot:circuitpython ...

distracted_jennings
4 $ magic.sh dckr-py-copy distracted_jennings

This will copy firmware.bin to your current directory, from where you can flash it
using an esptool script or Adafruit WebSerial version.

To get a better idea of what these commands are doing, check out the Dockerfile
and the magic commands.

To use the infrastructure for different boards, adjust the TARGET_ build arguments to
use your own fork of the Adafruit CP github.

After tinkering with the configuration and adjusting the pin definitions relative to
our hardware schematics, the final step in the process is to make a pull request to
contribute the board back to the main repository.

Happy porting!

Hamish Cunningham 307

https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/support/circuitpython/Dockerfile
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/support/circuitpython/Dockerfile
https://github.com/hamishcunningham/circuitpython
https://github.com/hamishcunningham/circuitpython/tree/unphone/ports/espressif/boards/unphone
https://github.com/hamishcunningham/circuitpython/tree/unphone/ports/espressif/boards/unphone
https://gitlab.com/hamishcunningham/the-internet-of-things/-/tree/master/support/magic.sh
https://hub.docker.com/r/hamishcunningham/iot/tags
https://adafruit.github.io/Adafruit_WebSerial_ESPTool/
https://gitlab.com/hamishcunningham/the-internet-of-things/-/blob/master/support/magic.sh#L985
https://github.com/adafruit/circuitpython
https://gitlab.com/hamishcunningham/unphone/-/blob/master/doc/unphone-spin9-schematic.pdf

15 Colophon

These notes were:

• developed on GNU Ubuntu Linux
• edited with Vim
• written in Markdown
• translated into LaTeX and then PDF by Pandoc (with Pandoc-Crossref)
• built in a Docker CoreOS TeX-live image using GitLab continuous integration
and deployment onto GitLab Pages

• probably longer, wordier and more chaotic because of the pandemonium; my
apologies!

All opinions expressed are those of the author(s). YMMV.

309

https://www.gnu.org/
https://ubuntu.com/
https://www.linux.com/what-is-linux/
https://www.vim.org/
https://wikipedia.org/wiki/Markdown
http://pandoc.org/
https://hub.docker.com/r/thomasweise/texlive
https://iot.unphone.net/
https://www.ncbi.nlm.nih.gov/research/coronavirus/

Bibliography

Adelantado, F, X Vilajosana, P Tuset-Peiro, B Martinez, J Melia-Segui, and TWatteyne.
2017. “Understanding the Limits of LoRaWAN.” IEEE Commun. Mag. 55 (9): 34–
40.

Al-Mhabis, Nada, and Hamish Cunningham. 2017. “Socio-political perspectives on
surveillance and censorship: Implications for on-line privacy in the age of cloud
computing.” In 2017 Computing Conference. London: IEEE. https://doi.org/10.1
109/sai.2017.8252105.

Arduino. 2017. “Arduino IDE Guide.” https://www.arduino.cc/en/Guide/Environm
ent. https://www.arduino.cc/en/Guide/Environment.

Ashton, Kevin. 2011. “That ‘internet of things’ thing.” RFiD Journal 22 (7).

Banzi, Massimo, and Michael Shiloh. 2014b. Getting Started with Arduino: The
Open Source Electronics Prototyping Platform. Maker Media, Inc.

———. 2014a. Getting Started with Arduino: The Open Source Electronics Proto-
typing Platform. Maker Media, Inc. https://market.android.com/details?id=book-
Xd3SBQAAQBAJ.

Barragán, H. 2004. “Wiring: Prototyping physical interaction design.” Interaction
Design Institute, Ivrea, Italy. https://scholar.google.ca/scholar?cluster=40736
15779562206947&hl=en&as_sdt=0,5&sciodt=0,5.

———. 2016. “The untold history of Arduino.” Luettavissa: Https://Arduinohistory.
Github. Io/Luettu. https://scholar.google.ca/scholar?cluster=1587209570838
6818356&hl=en&as_sdt=0,5&sciodt=0,5.

Bassi, Alessandro, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob Van Kranen-
burg, Sebastian Lange, and Stefan Meissner. 2013. “Enabling things to talk.”
Designing IoT Solutions with the IoT Architectural Reference Model, 163–211.

Blenn, Norbert, and Fernando Kuipers. 2017. “LoRaWAN in the Wild: Measurements
from The Things Network.” arXiv [Cs.NI], June. http://arxiv.org/abs/1706.030
86.

Brand, S. 1994. How Buildings Learn. London: Penguin.

Brendan McMahan, H, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2016. “Communication-Efficient Learning of Deep Networks
from Decentralized Data,” February. http://arxiv.org/abs/1602.05629.

311

https://doi.org/10.1109/sai.2017.8252105
https://doi.org/10.1109/sai.2017.8252105
https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/Guide/Environment
https://market.android.com/details?id=book-Xd3SBQAAQBAJ
https://market.android.com/details?id=book-Xd3SBQAAQBAJ
https://scholar.google.ca/scholar?cluster=4073615779562206947&hl=en&as_sdt=0,5&sciodt=0,5
https://scholar.google.ca/scholar?cluster=4073615779562206947&hl=en&as_sdt=0,5&sciodt=0,5
https://scholar.google.ca/scholar?cluster=15872095708386818356&hl=en&as_sdt=0,5&sciodt=0,5
https://scholar.google.ca/scholar?cluster=15872095708386818356&hl=en&as_sdt=0,5&sciodt=0,5
http://arxiv.org/abs/1706.03086
http://arxiv.org/abs/1706.03086
http://arxiv.org/abs/1602.05629

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Coleman, Gareth. 2014. “aquaPionics.” https://hackaday.io/project/2190-aquapi
onics. https://hackaday.io/project/2190-aquapionics.

Cunningham, H. 2012. “Agile Research.” ArXiv e-Prints http://arxiv.org/abs/1202.0652v1
(February). http://adsabs.harvard.edu/abs/2012arXiv1202.0652C.

Cunningham, Hamish, Gareth Coleman, and Valentin Radu. 2022. Mi Casa su Bot-
net? Learning the Internet of Things with WaterElf, unPhone and the ESP32.
https://iot.unphone.net/.

Cunningham, Hamish, and Benzion Kotzen. 2015. “Meet the sustainable vegeta-
bles that thrive on a diet of fish poo.” The Conversation, November.

Cunningham, Hamish, DianaMaynard, Kalina Bontcheva, and Valentin Tablan. 2002.
“GATE: an Architecture for Development of Robust HLT Applications.” In Proceed-
ings of the 40th Annual Meeting on Association for Computational Linguistics,
7–12 July 2002, 168–75. ACL ’02. Philadelphia, Pennsylvania: Association for
Computational Linguistics. https://doi.org/10.3115/1073083.1073112.

Cunningham, H, R G Gaizauskas, and Y Wilks. 1995. “A General Architecture for
Text Engineering (GATE) – a new approach to Language Engineering R&D.” De-
partment of Computer Science, University of Sheffield.

Czekster, R M, C Morisset, A V Moorsel, J C Mace, W A Bassage, and J A Clark. 2021.
“Cybersecurity Roadmap for Active Buildings.” In, 219–49. https://doi.org/10.1
007/978-3-030-79742-3/_9.

Denning, Dorothy E, and Peter J Denning. 1977. “Certification of programs for
secure information flow.” Commun. ACM 20 (7): 504–13. https://doi.org/10.114
5/359636.359712.

Dhanjani, Nitesh. 2015. Abusing the Internet of Things: Blackouts, Freakouts, and
Stakeouts. “O’Reilly Media, Inc.”

Dickens, Charles. 1877. A Tale of Two Cities: And, Great Expectations. Lee; Shep-
ard. https://play.google.com/store/books/details?id=opBBAQAAMAAJ.

Dizdarević, Jasenka, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. 2019.
“A Survey of Communication Protocols for Internet of Things and Related Chal-
lenges of Fog and Cloud Computing Integration.” ACM Comput. Surv. 51 (6):
1–29. https://doi.org/10.1145/3292674.

Doctorow, Cory. 2012. Pirate cinema. Macmillan. https://freekidsbooks.org/wp-
content/uploads/2020/01/FKB-Stories-Cory_Doctorow_-_Pirate_Cinema.pdf.

———. 2019. “Unauthorized Bread.” https://craphound.com/category/unauthorize
dbread/. https://craphound.com/category/unauthorizedbread/.

———. 2020. Attack Surface. Head of Zeus Ltd. https://play.google.com/store/bo
oks/details?id=G2XWDwAAQBAJ.

312 Hamish Cunningham

https://hackaday.io/project/2190-aquapionics
https://hackaday.io/project/2190-aquapionics
https://hackaday.io/project/2190-aquapionics
http://adsabs.harvard.edu/abs/2012arXiv1202.0652C
https://iot.unphone.net/
https://doi.org/10.3115/1073083.1073112
https://doi.org/10.1007/978-3-030-79742-3/_9
https://doi.org/10.1007/978-3-030-79742-3/_9
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://play.google.com/store/books/details?id=opBBAQAAMAAJ
https://doi.org/10.1145/3292674
https://freekidsbooks.org/wp-content/uploads/2020/01/FKB-Stories-Cory_Doctorow_-_Pirate_Cinema.pdf
https://freekidsbooks.org/wp-content/uploads/2020/01/FKB-Stories-Cory_Doctorow_-_Pirate_Cinema.pdf
https://craphound.com/category/unauthorizedbread/
https://craphound.com/category/unauthorizedbread/
https://craphound.com/category/unauthorizedbread/
https://play.google.com/store/books/details?id=G2XWDwAAQBAJ
https://play.google.com/store/books/details?id=G2XWDwAAQBAJ

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Doukas, Charalampos. 2012. Building Internet of Things with the Arduino. USA:
CreateSpace Independent Publishing Platform.

Edmondson, Jill L, Hamish Cunningham, Daniele O Densley Tingley, Miriam C Dob-
son, Darren R Grafius, Jonathan R Leake, Nicola McHugh, et al. 2020. “The
hidden potential of urban horticulture.” Nature Food 1 (3): 155–59.

Edmondson, Jill, Roscoe Blevins, Hamish Cunningham, Miriam Dobson, Jonathan
Leake, and Darren Grafius. 2019. “Grow your own food security? Integrating
science and citizen science to estimate the 2 contribution of own growing to UK
food production.” People, Plants, Planet, January. https://doi.org/10.1002/ppp3
.20.

ESP32 Community. 2022. “Esp32 Forum.” https://esp32.com/. https://esp32.co
m/.

Fraser, Quentin Stafford-. 1995. “Trojan Room Coffee Pot Biography.” https://www.
cl.cam.ac.uk/coffee/qsf/coffee.html. https://www.cl.cam.ac.uk/coffee/qsf/coffee
.html.

Greenfield, Adam. 2017. “Rise of the machines: who is the ‘Internet of things’ good
for?” Guardian, June. https://goo.gl/uIUCrD.

Grover, Sarthak, and Nick Feamster. 2016. “The internet of unpatched things.”
Proc. FTC PrivacyCon. https://www.ftc.gov/system/files/documents/public_com
ments/2015/10/00071-98118.pdf.

Grover, Siddharth. 2017. “The Internet of Things (2016).” International Journal of
Computer Science and Engineering. https://doi.org/10.14445/23488387/ijcse-
v4i8p101.

Hunn, Nick. 2018. “British Smart Meters cost £28 million EACH.” https://www.nick
hunn.com/british-smart-meters-cost-28-million-each/. https://www.nickhunn.c
om/british-smart-meters-cost-28-million-each/.

Kairouz, Peter, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, et al. 2019. “Advances and Open Problems
in Federated Learning,” December. http://arxiv.org/abs/1912.04977.

Kolban, Neil. 2017. Kolban’s Book on ESP32.

Kranenburg, Rob van, and Alex Bassi. 2012. “IoT Challenges.” Proc. Int. Wirel.
Commun. Mob. Comput. Conf. 1 (1): 9. https://doi.org/10.1186/2192-1121-1-
9.

Kurniawan, Agus. 2016. Smart Internet of Things Projects. Packt.

Li, Y, and H Cunningham. 2008. “Geometric and Quantum Methods for Information
Retrieval.” SIGIR Forum 42 (2): 22–32. http://www.sigir.org/forum/2008D-
TOC.html.

Hamish Cunningham 313

https://doi.org/10.1002/ppp3.20
https://doi.org/10.1002/ppp3.20
https://esp32.com/
https://esp32.com/
https://esp32.com/
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://goo.gl/uIUCrD
https://www.ftc.gov/system/files/documents/public_comments/2015/10/00071-98118.pdf
https://www.ftc.gov/system/files/documents/public_comments/2015/10/00071-98118.pdf
https://doi.org/10.14445/23488387/ijcse-v4i8p101
https://doi.org/10.14445/23488387/ijcse-v4i8p101
https://www.nickhunn.com/british-smart-meters-cost-28-million-each/
https://www.nickhunn.com/british-smart-meters-cost-28-million-each/
https://www.nickhunn.com/british-smart-meters-cost-28-million-each/
https://www.nickhunn.com/british-smart-meters-cost-28-million-each/
http://arxiv.org/abs/1912.04977
https://doi.org/10.1186/2192-1121-1-9
https://doi.org/10.1186/2192-1121-1-9
http://www.sigir.org/forum/2008D-TOC.html
http://www.sigir.org/forum/2008D-TOC.html

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

Loftus, Jack. 2011. “Dear Fitbit Users, Kudos On the 30 Minutes of ‘Vigorous Sexual
Activity’ Last Night.” Gizmodo.

“Lucas Plan”. 2022. “The New Lucas Plan.” lucasplan.org.uk. lucasplan.org.uk.

MacDermott, A, T Baker, and Q Shi. 2018. “Iot Forensics: Challenges for the Ioa
Era.” In 2018 9th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), 1–5.

Machine, Coke. n.d. “The ”Only” Coke Machine on the Internet.” https://www.cs.c
mu.edu/~coke/history_long.txt. https://www.cs.cmu.edu/~coke/history_long.tx
t.

Margolis, Michael. 2011. Arduino Cookbook: Recipes to Begin, Expand, and En-
hance Your Projects. “O’Reilly Media, Inc.”

McEwen, Adrian, and Hakim Cassimally. 2013. Designing the Internet of Things.
John Wiley & Sons.

Monk, Simon. 2013. Programming Arduino Next Steps: Going Further with
Sketches. McGraw Hill Professional.

Munir, S, M Mayfield, D Coca, S A Jubb, and others. 2019. “Analysing the perfor-
mance of low-cost air quality sensors, their drivers, relative benefits and cali-
bration in cities—A case study in Sheffield.” Environ. Monit. Assess. https:
//link.springer.com/article/10.1007/s10661-019-7231-8.

Naik, N. 2017. “Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP.” In 2017 IEEE International Systems Engineering Sympo-
sium (ISSE), 1–7. https://doi.org/10.1109/SysEng.2017.8088251.

NERC. 2016. “NERC Guidance on the Safe Use of Lithium Batteries.” http://ww
w.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-batteries/.
http://www.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-
batteries/.

Nold, Christian, and Rob van Kranenburg. 2011. The Internet of People for a Post-oil
World. Lulu.com.

Nordrum, Amy. 2016. “The internet of fewer things [News].” IEEE Spectrum. https:
//doi.org/10.1109/mspec.2016.7572524.

O’Muircheartaigh, Fionan. 2013. “The Smart City: Using Technology to Reduce
Congestion in London.” https://www.sustainablebusinesstoolkit.com/the-smart-
city-using-technology-to-reduce-congestion-in-london/. https://www.sustainabl
ebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-
london/.

O’Reilly, Tim, and Cory Doctorow. 2015. Opportunities and Challenges in the IoT.
O’Reilly Media, Inc. https://www.oreilly.com/library/view/opportunities-and-
challenges/9781492048220/.

314 Hamish Cunningham

lucasplan.org.uk
https://lucasplan.org.uk
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://link.springer.com/article/10.1007/s10661-019-7231-8
https://link.springer.com/article/10.1007/s10661-019-7231-8
https://doi.org/10.1109/SysEng.2017.8088251
http://www.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-batteries/
http://www.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-batteries/
http://www.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-batteries/
http://www.nerc.ac.uk/about/policy/safety/procedures/guidance-lithium-batteries/
https://doi.org/10.1109/mspec.2016.7572524
https://doi.org/10.1109/mspec.2016.7572524
https://www.sustainablebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-london/
https://www.sustainablebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-london/
https://www.sustainablebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-london/
https://www.sustainablebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-london/
https://www.sustainablebusinesstoolkit.com/the-smart-city-using-technology-to-reduce-congestion-in-london/
https://www.oreilly.com/library/view/opportunities-and-challenges/9781492048220/
https://www.oreilly.com/library/view/opportunities-and-challenges/9781492048220/

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

Oner, Vedat Ozan. 2021. Developing IoT Projects with ESP32: Automate Your Home
Or Business with Inexpensive Wi-Fi Devices. Packt Publishing. https://play.goo
gle.com/store/books/details?id=BM56zgEACAAJ.

Perzanowski, Aaron, and Jason Schultz. 2016. “The End of Ownership.” https:
//mitpress.mit.edu/books/end-ownership. https://mitpress.mit.edu/books/end-
ownership.

Pfister, Cuno. 2011. Getting Started with the Internet of Things: Connecting Sen-
sors and Microcontrollers to the Cloud. “O’Reilly Media, Inc.”

Rakcozy, B. 2011. Aquaponics Q and A: The Answers to Your Questions about
Aquaponics. Nelson; Pade. http://books.google.co.uk/books/about/Aquap
onics_Q_and_A.html?hl=&id=scVKMwEACAAJ.

Reas, Casey, and Ben Fry. 2007. Processing: A Programming Handbook for Visual
Designers and Artists. MIT Press. https://play.google.com/store/books/details?i
d=tqW75bfJkxIC.

Robinson, Kim Stanley. 2020. The Ministry for the Future: A Novel. Orbit. https:
//play.google.com/store/books/details?id=dvHNDwAAQBAJ.

Romkey, J. 2017. “Toast of the IoT: The 1990 Interop Internet Toaster.” IEEE Con-
sumer Electronics Magazine 6 (1): 116–19. https://doi.org/10.1109/MCE.2016.2
614740.

Rubell, Brent. 2018. “Welcome to Adafruit IO.” https://learn.adafruit.com/welcome-
to-adafruit-io; Adafruit. https://learn.adafruit.com/welcome-to-adafruit-io.

Rudd, Steph, and Hamish Cunningham. 2021a. “Selective privacy in IoT smart-
farms for battery-powered device longevity,” August. http://arxiv.org/abs/2108
.02579.

———. 2021b. “Low-Energy Authentication with Selective Privacy for Heteroge-
neous IoT Devices in Smart-Farms.” In 2021 30th Conference of Open Innova-
tions Association FRUCT, 230–38. https://doi.org/10.23919/FRUCT53335.2021
.9599987.

———. 2022. “Towards Lightweight Authorisation of IoT-Oriented Smart-Farms us-
ing a Self-Healing Consensus Mechanism.” In 2022 31st Conference of Open
Innovations Association (FRUCT), 265–76. https://doi.org/10.23919/FRUCT5482
3.2022.9770892.

Schneier, Bruce. 2017. “Click Here to Kill Everyone.” NY Mag, January. http://ny
mag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-
schneier.html.

Schwartz, Marco. 2016a. Home Automation with the ESP8266: Build Home Automa-
tion Systems Using the Powerful and Cheap ESP8266 Wifi Chip. CreateSpace
Independent Publishing Platform.

Hamish Cunningham 315

https://play.google.com/store/books/details?id=BM56zgEACAAJ
https://play.google.com/store/books/details?id=BM56zgEACAAJ
https://mitpress.mit.edu/books/end-ownership
https://mitpress.mit.edu/books/end-ownership
https://mitpress.mit.edu/books/end-ownership
https://mitpress.mit.edu/books/end-ownership
http://books.google.co.uk/books/about/Aquaponics_Q_and_A.html?hl=&id=scVKMwEACAAJ
http://books.google.co.uk/books/about/Aquaponics_Q_and_A.html?hl=&id=scVKMwEACAAJ
https://play.google.com/store/books/details?id=tqW75bfJkxIC
https://play.google.com/store/books/details?id=tqW75bfJkxIC
https://play.google.com/store/books/details?id=dvHNDwAAQBAJ
https://play.google.com/store/books/details?id=dvHNDwAAQBAJ
https://doi.org/10.1109/MCE.2016.2614740
https://doi.org/10.1109/MCE.2016.2614740
https://learn.adafruit.com/welcome-to-adafruit-io
https://learn.adafruit.com/welcome-to-adafruit-io
https://learn.adafruit.com/welcome-to-adafruit-io
http://arxiv.org/abs/2108.02579
http://arxiv.org/abs/2108.02579
https://doi.org/10.23919/FRUCT53335.2021.9599987
https://doi.org/10.23919/FRUCT53335.2021.9599987
https://doi.org/10.23919/FRUCT54823.2022.9770892
https://doi.org/10.23919/FRUCT54823.2022.9770892
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html

Iteration 7 (Q1 2024, 7.1644.2024-03-12). Mi Casa su Botnet?

———. 2016b. Internet of Things with ESP8266. Packt Publishing Ltd.

Sivaraman, V, H H Gharakheili, A Vishwanath, R Boreli, and O Mehani. 2015.
“Network-level security and privacy control for smart-home IoT devices.” In
2015 IEEE 11th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 163–67.

Slama, Dirk, Frank Puhlmann, Jim Morrish, and Rishi M Bhatnagar. 2015. Enterprise
IoT: Strategies and Best Practices for Connected Products and Services. “O’Reilly
Media, Inc.”

Somerville, Christopher, Moti Cohen, Edoardo Pantanella, Austin Stankus, and
Alessandro Lovatelli. 2014. Small-scale Aquaponic Food Production: Integrated
Fish and Plant Farming. FAO Fisheries and Aquaculture Technical Paper No. 589.
FAO. http://books.google.co.uk/books/about/Small_scale_Aquaponic_Food_Pro
duction.html?hl=&id=DpRirgEACAAJ.

Stallman, Richard. 2002. Free Software, Free Society: Selected Essays of Richard
M. Stallman. Lulu.com.

Sterling, Bruce. 2014. The Epic Struggle of the Internet of Things. Strelka Press.
https://www.amazon.co.uk/Epic-Struggle-Internet-Things-ebook/dp/B00N7EKIJ
4.

Stern, Nicholas, and UK, Treasury. 2007. The Economics of Climate Change: The
Stern Review. Cambridge University Press. https://play.google.com/store/book
s/details?id=U-VmIrGGZgAC.

Tablan, V, K Bontcheva, I Roberts, and H Cunningham. 2014. “Mıḿir: an Open-
Source Semantic Search Framework for Interactive Information Seeking and Dis-
covery.” Journal of Web Semantics. https://doi.org/10.1016/j.websem.2014.10
.002.

Tablan, V, I Roberts, H Cunningham, and K Bontcheva. 2013. “GATECloud.net: a
Platform for Large-Scale, Open-Source Text Processing on the Cloud.” Philos.
Trans. R. Soc. Lond. A 371 (1983).

Tanenbaum, A S, and H Bos. 2015. “Modern operating systems.” http://lib.bvu.ed
u.vn/bitstream/TVDHBRVT/19439/1/Modern-Operatin-systems.pdf.

Tarkoma, Sasu, Matti Siekkinen, Eemil Lagerspetz, and Yu Xiao. 2014. Smartphone
Energy Consumption. Cambridge University Press. https://www.cambridge.org/
core_title/gb/447121.

Thakur, Manoj. 2016. Zero to Hero ESP8266. Circuits4you.com.

The Economist. 2019. “How the world will change as computers spread into ev-
eryday objects.” https://www.economist.com/leaders/2019/09/12/how-the-
world-will-change-as-computers-spread-into-everyday-objects; The Economist.
https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-
computers-spread-into-everyday-objects.

316 Hamish Cunningham

http://books.google.co.uk/books/about/Small_scale_Aquaponic_Food_Production.html?hl=&id=DpRirgEACAAJ
http://books.google.co.uk/books/about/Small_scale_Aquaponic_Food_Production.html?hl=&id=DpRirgEACAAJ
https://www.amazon.co.uk/Epic-Struggle-Internet-Things-ebook/dp/B00N7EKIJ4
https://www.amazon.co.uk/Epic-Struggle-Internet-Things-ebook/dp/B00N7EKIJ4
https://play.google.com/store/books/details?id=U-VmIrGGZgAC
https://play.google.com/store/books/details?id=U-VmIrGGZgAC
https://doi.org/10.1016/j.websem.2014.10.002
https://doi.org/10.1016/j.websem.2014.10.002
http://lib.bvu.edu.vn/bitstream/TVDHBRVT/19439/1/Modern-Operatin-systems.pdf
http://lib.bvu.edu.vn/bitstream/TVDHBRVT/19439/1/Modern-Operatin-systems.pdf
https://www.cambridge.org/core_title/gb/447121
https://www.cambridge.org/core_title/gb/447121
https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-computers-spread-into-everyday-objects
https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-computers-spread-into-everyday-objects
https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-computers-spread-into-everyday-objects
https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-computers-spread-into-everyday-objects

Mi Casa su Botnet? Iteration 7 (Q1 2024, 7.1644.2024-03-12).

The Things Network. 2018. “The Things Network Manifesto.” https://github.com/T
heThingsNetwork/Manifest. https://github.com/TheThingsNetwork/Manifest.

Upton, Eben, and Gareth Halfacree. 2014. Raspberry Pi user guide. John Wiley &
Sons.

Vitali, Stefania, and Stefano Battiston. 2014. “The Community Structure of the
Global Corporate Network.” PLoS ONE. https://doi.org/10.1371/journal.pone.0
104655.

Vitali, Stefania, James B Glattfelder, and Stefano Battiston. 2011. “The network of
global corporate control.” PLoS One 6 (10): e25995. https://doi.org/10.1371/jo
urnal.pone.0025995.

Wadhams, Peter. 2017. A farewell to ice: a report from the Arctic. Oxford University
Press.

Wallace, Rob. 2016. Big Farms Make Big Flu: Dispatches on Influenza, Agribusiness,
and the Nature of Science. NYU Press. https://play.google.com/store/books/de
tails?id=lQE9DAAAQBAJ.

Ward, Mark. 2001. “BBC News.” BBC. http://news.bbc.co.uk/1/hi/sci/tech/1264205
.stm.

Warden, Pete, and Daniel Situnayake. 2019. TinyML: Machine Learning with Ten-
sorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. “O’Reilly Media,
Inc.” https://play.google.com/store/books/details?id=tH3EDwAAQBAJ.

Wiebers, David O, and Valery L Feigin. 2020. “What the COVID-19 Crisis Is Telling
Humanity.” Neuroepidemiology 54 (4): 283–86. https://doi.org/10.1159/0005
08654.

Hamish Cunningham 317

https://github.com/TheThingsNetwork/Manifest
https://github.com/TheThingsNetwork/Manifest
https://github.com/TheThingsNetwork/Manifest
https://doi.org/10.1371/journal.pone.0104655
https://doi.org/10.1371/journal.pone.0104655
https://doi.org/10.1371/journal.pone.0025995
https://doi.org/10.1371/journal.pone.0025995
https://play.google.com/store/books/details?id=lQE9DAAAQBAJ
https://play.google.com/store/books/details?id=lQE9DAAAQBAJ
http://news.bbc.co.uk/1/hi/sci/tech/1264205.stm
http://news.bbc.co.uk/1/hi/sci/tech/1264205.stm
https://play.google.com/store/books/details?id=tH3EDwAAQBAJ
https://doi.org/10.1159/000508654
https://doi.org/10.1159/000508654

	Hope, Technology and Heath Robinson
	Welcome to the Toy Shop!
	What's the Catch?
	Catch #3: `Click Here to Kill Everybody?'
	IoT: From the General to the Specific
	The ESP32 Microcontroller
	Hope

	How the Course Works
	Main Changes since Iteration 6 (2023)
	Main Changes since Iteration 5 (2022)
	Main Changes since Iteration 4 (2021)
	Main Changes since Iteration 3 (2018)
	Assessment

	COM3505 Week 00: Preliminaries
	Setting up your Git Repository
	Tell us your Account User Name on GitLab
	Good Tools to Learn
	STAYING SAFE in the Electronics Lab
	Using the iForge

	COM3505 Week 01 Course Notes
	Learning Objectives
	Assignments
	Working with your Git Repository
	First Lab Checklist

	Further Reading

	Definitions, and a Burning Question
	Defining the IoT
	Revolutionary Code: from MIT Printers to the Arduino
	Return with me to Boston in the 1970s…
	Whaddya Mean, I can't Fix It?!
	What To Do?

	Coding Support Tools: IDEs, SDKs, Libraries
	Toolchains: In the Beginning, There Was The C Compiler…
	ESP-IDF, FreeRTOS and the ESP32 Arduino Core
	ESP-IDF
	FreeRTOS
	The Arduino Core for ESP32
	Version Hell!!!

	Developer Tools: CLIs and IDEs

	Cross-Platform Development with Containers
	VMs, the Cloud, and Containers
	DevOps, Containers and CI/CD
	Portable Development Environments

	A Helper Script: magic.sh
	COM3505 Week 02 Notes
	Learning Objectives
	Assignments, Set Up, Exercises 1 & 2 (Ex01, Ex02)
	Adding a .gitignore File
	Set up your Programming Environment
	Using the Arduino IDE (ArdIDE)
	Using VSCode and the PlatformIO Plugin
	Using magic.sh and the Firmware Template
	Docker + PlatformIO + WebSerial to build cross-platform
	Using Docker with magic.sh, pio or idf.py
	Using PlatformIO CLI

	Hardware 2: Sensor/Actuator Board
	Using a Breadboard to Make a Sensor/Actuator Circuit

	Further Reading

	History; Blinking Things; WiFi
	The Multiple Personalities of the Arduino Project
	A Crossover Point
	The Early History of the IoT
	The Current State of IoT Hardware

	COM3505 Week 03 Notes
	Learning Objectives
	Assignments
	Notes on the Model Code from Week 2
	Recap: Connecting to the ESP32
	Various Arduino Functions
	Reading from Switches

	Exercise 03 Notes
	Extension to Blinky (exercise 02)
	A Final Breadboard Prototype: 9 LEDs
	Pinouts

	Further Reading

	Country of the Blind: Networking Devices Without UIs
	Provisioning and Update
	WiFi-based Provisioning
	Over-the-Air Updates (OTA)
	WiFi Provisioning + OTA = ???
	RainMaker Provisioning & OTA
	Provisioning and OTA with Matter

	COM3505 Week 04 Notes
	Learning Objectives
	Assignments
	Coding Hints
	Which WiFi Network? What if it Doesn't Connect?
	Details of Our Cloud Server (for Ex08)

	Moving 9 LEDs to Matrixboard

	Further Reading

	Sensing and Responding
	Analog and Digital Sensors
	Two Ways to Sense Light Levels

	Reading from Analog Sensors
	Digital Sensors
	Avoid Floating Voters
	Vcc by any Other Name Would Smell as Sweet

	Local Protocols: UART, SPI, I2C, 1-Wire…
	Terminology
	UART
	SPI
	I2C
	1-WIRE
	Other Local Protocols
	Talking the Talk: Local Protocol Examples

	Actuators
	High Power Actuators with Relays
	High Voltage Actuators with Radio Control
	Electric Blankets, Fish Farming and Liverpuddlians

	COM3505 Week 05 Notes
	Learning Objectives
	Assignments
	Provisioning and Firmware Update
	Configuring Ex10
	Hints

	The ESP's Sense of Touch

	Machine Learning and Analytics in the Cloud
	Is AI about Intelligence?
	IoT, Big Data Analytics, and Deep Learning
	Machine Learning at the Edge
	Motivation
	Introduction to Machine Learning
	Training Deep Neural Networks
	Neural Network Quantization
	The Quantization Method
	Keyword spotting exercise

	COM3505 Week 06 Notes
	Learning Objectives
	Assignments
	Coding Hints
	Setting up an IFTTT Applet
	Accessing the IFTTT Applet from Firmware

	Further Reading

	Scheduling Tasks, Gestating New Devices
	Timers, Interrupts, Tasks, Events
	Time Slicing
	Interrupts and Timers
	FreeRTOS Tasks

	IoT Device Gestation: Creating the unPhone
	Steps in Device Creation
	Some Lessons

	COM3505 Week 07 Notes
	Futher Reading

	Applications
	Beep my Earing Whenever I Start Sounding Like a Donkey
	Projects: Design, Build, Document
	Possible Projects

	LiPo Safety
	What are Lithium Polymer Batteries?
	What are the Dangers?
	Avoiding Problems

	Build and Development Notes
	DIY Alexa
	Why ``Marvin?''
	Parts
	Putting it all Together
	Marvin, Siri, Alexa, Google Home: a Privacy Nightmare?!

	unPhone Projects
	A Simple Robot Car
	Robot Car: Kit List

	Binary Diff for Incremental OTA
	Advanced Topic: Drag&Drop Update

	TV Remote, TV-B-Gone: IR-Remote Projects
	Light Sensor
	Remote Control Power Sockets for Home Automation
	Home Automation: Kit List

	Sound Input
	CMG ICS-43434
	Adafruit SPH0645LM4H

	MP3 Player
	NeoPixels; Dawn Simulator Alarm
	Dawn Simulator: Kit List

	Peer-to-Peer Voting Systems
	Panic Button
	Ultrasonic sensors
	Smart Watches
	Predictive Text UI
	Musical Instrument
	Bedtime Tracker
	Battleships Game
	A Note on UIs
	Air Quality Monitor
	Air Quality: Kit List

	COM3505 Week 08 Notes
	WARNINGS!!!
	Learning Objectives
	Assignments and Assessment

	Further Reading

	Learning in the Fog – AI on the Edge
	Why Learn at the Edge?
	Federated Learning
	How does FL work?
	Applications of FL
	Research challenges
	Summary
	Hands on experience

	COM3505 Week 09 Notes
	Learning Objectives

	WaterElves, Gripples and Fish Poo: IoT Case Studies
	Aquaponic Control Systems
	Urban Agriculture
	Research Questions

	COM3505 Week 10 Notes
	Learning Objectives

	Further Reading

	unPhone Yourself!
	The Hardware
	Programming the unPhone
	Class unPhone, and minimal example
	Pindefs
	Power management task helpers
	UI0 helpers
	Touch, display, acceleration
	SD cards, LoRa
	PMU API
	Small data store and other utils
	The TCA9555
	Debug and timing macros

	The UI0 and LVGL interfaces
	LVGL
	UI0; adding a screen

	Power Consumption States
	A Tour of the Hardware Schematics
	The ESP32 and Core Modules
	The LCD and Touch Screen
	Power Management

	A Note on Versions
	COM3505 Week 11 Notes
	Learning Objectives

	Gateway to the Future
	Non-Local Communications Protocols
	Lower Power WANs and TTN

	Hope, Revisited
	The Depressing Bit
	The Third Certainty: Change
	Democratising… Stuff?
	IoT: from their Cloud to our Fog?
	Transition: from Sustainability to Resilience?

	The Main Reason

	COM3505 Week 12 Notes
	Learning Objectives

	Appendix A: More Notes on Build Systems
	CLI on a Raspberry Pi
	CLI Using Docker
	VSCode IDF Extension
	Using VSCode with the Arduino Extension
	FAQ

	Appendix B: CircuitPython on Feather S3 and unPhone
	What is CircuitPython?
	CircuitPython on the Feather S3
	Porting CircuitPython to the unPhone

	Colophon
	Bibliography

